E-Nose for Piston Ring and Cylinder Block Condition Detection of Motorcycle Engine Based on MyRIO LabVIEW Programming

- Andrizal - Politeknik Negeri Padang, Kampus Limau Manis, Padang, 21562, Indonesia
Yul Antonisfia - Politeknik Negeri Padang, Kampus Limau Manis, Padang, 21562, Indonesia
Nadia Alfitri - Politeknik Negeri Padang, Kampus Limau Manis, Padang, 21562, Indonesia
- Junaldi - Politeknik Negeri Padang, Kampus Limau Manis, Padang, 21562, Indonesia

Citation Format:

DOI: http://dx.doi.org/10.62527/joiv.8.1.2221


This study has created a system capable of identifying the condition of the piston ring and cylinder block of a 4-stroke motorcycle engine using petrol or similar through exhaust emissions. Multisensory gas, sensitive to changes in CO, CO2, NOx, and HC gas elements and compounds, is installed as an input to the exhaust channel and integrated using LabVIEW programming on the NI myRIO module. Multisensory data is processed using the FFT and the backpropagation method to classify whether the piston rings and engine cylinder block are in good or damaged condition. Tests have been carried out on motorbikes with piston rings and engine cylinder blocks that are in good, damaged, or unknown condition. During the test, the target error value for motorcycles with piston rings and engine cylinder blocks in good or damaged condition is less than 1%. The system can distinguish the condition of the piston ring and cylinder block of a motorcycle engine that is 100% optimal and 100% damaged with an error of 0% compared to the compression test method, and the maximum error is 20% Compared to the technician's manual method. Ten motorcycles were randomly tested in unknown conditions; 50% were in good condition, and 50% were damaged. For further development, an electronic nose system can detect engine combustion conditions and damage to cylinder rings and 4-stroke motorbike engine blocks based on exhaust emissions.


Multisensory; emission; backpropagation; condition_of_engine_cylinder_block.

Full Text:



BPS 2022, “Catalog : 1101001,” Stat. Indones. 2020, vol. 1101001, p. 790, 2020.

P. C. Mishra, A. Roychoudhury, A. Banerjee, N. Saha, S. R. Das, and A. Das, “Coated Piston Ring Pack and Cylinder Liner Elastodynamics in Correlation to Piston Subsystem Elastohydrodynamic: Through FEA Modelling,” Lubricants, vol. 11, no. 5, 2023, doi: 10.3390/lubricants11050192.

A. Taiwo and T. BolaOnifade, “Carbon monoxide Content of Exhaust Emissions from Agricultural Tractor Engines: A Case Study of Ogbomoso, Oyo State, Nigeria,” Int. J. Adv. Eng. Manag. Sci., vol. 4, no. 8, pp. 622–625, 2018, doi: 10.22161/ijaems.4.8.7.

L. R. Sassykova et al., “The Main Components of Vehicle Exhaust Gases and Their Effective Catalytic Neutralization,” Orient. J. Chem., vol. 35, no. 1, pp. 110–127, 2019, doi: 10.13005/ojc/350112.

P. Puspitasari, S. Sukarni, and A. Hamzah, “Effect of MnFe2O4 Nanoparticles to Reduce CO and HC Levels on Vehicle Exhaust Gas Emissions,” J. Mech. Eng. Sci. Technol., vol. 2, no. 1, pp. 27–37, 2018, doi: 10.17977/um016v2i12018p027.

E. Febriyanti, A. Suhadi, P. Pada, B. Besar, T. K. Struktur, and K. Puspiptek, “Analisis Kegagalan Fire Ring Penyebab Kerusakan Piston Mesin Unit Kendaraan Bermotor Fire Ring Failure Analysis Causes of Piston Engine Damage From Motor Vehicle Unit,” pp. 99–106, 2016.

M. Kadafi and R. A. Putra, “Electronic Nose (E-Nose) Design for Arduino Nano-Based Halal Haram Identification,” J. Neutrino, vol. 13, no. 1, pp. 8–12, 2021, doi: 10.18860/neu.v13i1.8903.

D. Karakaya, O. Ulucan, and M. Turkan, “Electronic Nose and Its Applications: A Survey,” Int. J. Autom. Comput., vol. 17, no. 2, pp. 179–209, 2020, doi: 10.1007/s11633-019-1212-9.

T. Sharmilan, I. Premarathne, I. Wanniarachchi, S. Kumari, and D. Wanniarachchi, “Electronic Nose Technologies in Monitoring Black Tea Manufacturing Process,” J. Sensors, vol. 2020, 2020, doi: 10.1155/2020/3073104.

E. Górska-Horczyczak, D. Guzek, Z. Molęda, I. Wojtasik-Kalinowska, M. Brodowska, and A. Wierzbicka, “Applications of electronic noses in meat analysis,” Food Sci. Technol., vol. 36, no. 3, pp. 389–395, 2016, doi: 10.1590/1678-457X.03615.

M. V. Farraia, J. Cavaleiro Rufo, I. Paciência, F. Mendes, L. Delgado, and A. Moreira, “The electronic nose technology in clinical diagnosis: A systematic review,” Porto Biomed. J., vol. 4, no. 4, p. e42, 2019, doi: 10.1097/j.pbj.0000000000000042.

A. M. I. Saktiawati et al., “eNose-TB: A trial study protocol of electronic nose for tuberculosis screening in Indonesia,” PLoS One, vol. 16, no. 4 April, pp. 1–14, 2021, doi: 10.1371/journal.pone.0249689.

Andrizal, B. Bakhtiar, and R. Chadry, “Detection combustion data pattern on gasoline fuel motorcycle with carburetor system,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 6, no. 1, pp. 107–111, 2016, doi: 10.18517/ijaseit.6.1.618.

Andrizal, Lifwarda, A. Hidayat, R. Susanti, N. Alfitri, and R. Chadry, “The identification of Car Combustion engine category on exhaust emissions data pattern base using Sum Square Error Method,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 9, no. 5, pp. 1512–1519, 2019, doi: 10.18517/ijaseit.9.5.3928.

J. Rajagukguk and R. A. Pratiwi, “Emission Gas Detector (EGD) for Detecting Vehicle Exhaust Based on Combined Gas Sensors,” J. Phys. Conf. Ser., vol. 1120, no. 1, 2018, doi: 10.1088/1742-6596/1120/1/012020.

S. Sujarwata, P. Marwoto, and L. Handayani, “Thin Film-Based Sensor for Motor Vehicle Exhaust Gas, Nh3, and Co Detection,” J. Pendidik. Fis. Indones., vol. 12, no. 2, pp. 142–147, 2016, doi: 10.15294/jpfi.v12i2.4621.

S. Vishesh, M. Srinath, K. P. Gubbi, and H. N. Shivu, “Portable Low Cost Electronic Nose for Instant and Wireless Monitoring of Emission Levels of Vehicles Using Android Mobile Application,” vol. 5, no. 9, pp. 134–140, 2016, doi: 10.17148/IJARCCE.2016.5931.

H. Shah, U. Ranpura, K. Sheth, M. Harshit Bhavsar, and R. Scholars, “Failure of Piston & Piston pin in IC Engine: A Review,” Int. J. Sci. Dev. Res., vol. 2, no. 3, pp. 284–286, 2017.

A. Hannon, Y. Lu, J. Li, and M. Meyyappan, “A sensor array for the detection and discrimination of methane and other environmental pollutant gases,” Sensors (Switzerland), vol. 16, no. 8, pp. 1–11, 2016, doi: 10.3390/s16081163.

S. Matindoust, M. Baghaei-Nejad, M. H. S. Abadi, Z. Zou, and L. R. Zheng, “Food quality and safety monitoring using gas sensor array in intelligent packaging,” Sens. Rev., vol. 36, no. 2, pp. 169–183, 2016, doi: 10.1108/SR-07-2015-0115.

C. S. Prajapati, R. Soman, S. B. Rudraswamy, M. Nayak, and N. Bhat, “Single Chip Gas Sensor Array for Air Quality Monitoring,” J. Microelectromechanical Syst., vol. 26, no. 2, pp. 433–439, 2017, doi: 10.1109/JMEMS.2017.2657788.

F. Mujaahid, A. Malik Hizbullah, F. Dhimas Syahfitra, M. Abduh Dahlan, and N. Dwi Juliansyah, “Development of User Interface Based on LabVIEW for Unmanned Aircraft Application,” J. Electr. Technol. UMY, vol. 1, no. 2, pp. 106–111, 2017, doi: 10.18196/jet.1214.

R. El Dahr, X. Lignos, S. Papavieros, and I. Vayas, “Development and Validation of a LabVIEW Automated Software System for Displacement and Dynamic Modal Parameters Analysis Purposes,” Modelling, vol. 4, no. 2, pp. 189–210, 2023, doi: 10.3390/modelling4020011.

Andrizal, R. Chadry, and A. I. Suryani, “Embedded system using field programmable gate array (Fpga) myrio and labview programming to obtain data patern emission of car engine combustion categories,” Int. J. Informatics Vis., vol. 2, no. 2, pp. 56–62, 2018, doi: 10.30630/joiv.2.2.50.

Y. Y. and L. W. P. Richard P. Bagozzi, “Bogazzi_Assesing Construct Validity in Organiational Research,” Adm. Sci. Q., vol. 36, no. 3, pp. 421–458, 2017.

W. Siong Kwong, A. Ubin, and M. Z. Mohd Jenu, “Cyclist Monitoring System using NI myRIO-1900,” MATEC Web Conf., vol. 150, pp. 1–6, 2018, doi: 10.1051/matecconf/201815001006.

T. Tugino, A. Ardityawan, O. Yuliani, A. Asniar, and A. Basuki, “Application of Embedded Hardware Device NI myRIO 1900 as a Control Unit for Miniature Mixing Plant,” 2021, doi: 10.4108/eai.30-8-2021.2311523.

N. A. Othman, N. S. Damanhuri, M. A. Syafiq Mazalan, S. A. Shamsuddin, M. H. Abbas, and B. C. Chiew Meng, “Automated water quality monitoring system development via LabVIEW for aquaculture industry (Tilapia) in Malaysia,” Indones. J. Electr. Eng. Comput. Sci., vol. 20, no. 2, pp. 805–812, 2020, doi: 10.11591/ijeecs.v20.i2.pp805-812.

P. S. Naveen and K. R. R. M. Rao, “Ni myrio based smart robot with authentication switch,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 6, pp. 88–91, 2019.

K. Swain, M. Cherukuri, S. K. Mishra, B. Appasani, S. Patnaik, and N. Bizon, “Li-care: A labview and iot based ehealth monitoring system,” Electron., vol. 10, no. 24, pp. 1–15, 2021, doi: 10.3390/electronics10243137.