Personalized Learning Models Using Decision Tree and Random Forest Algorithms in Telecommunication Company

Alexander Wiratman - Universitas Multimedia Nusantara, Indonesia
Wella Wella - Universitas Multimedia Nusantara, Indonesia

Citation Format:



In response to the rising popularity of online training, this study addresses the crucial need for effective assessment methods at PT XYZ. The research focuses on developing a comprehensive solution through a data visualization dashboard and a machine learning model. The data visualization dashboard, created using Tableau, provides an interactive platform for exploring training data. It offers valuable insights into employees learning progress and needs, empowering them to monitor their advancement and identify areas for improvement effectively. Simultaneously, a machine learning model was developed using Python and Google Collab, employing decision trees and random forest algorithms. The model exhibited promising results with an accuracy rate of 69% for decision trees and 70% for random forests, indicating its proficiency in predicting skill groups. Furthermore, the study rigorously evaluated the dashboard and machine learning model using a 20% holdout dataset, affirming their effectiveness. The dashboard, deployed on a web server, ensures accessibility to all PT XYZ employees, enhancing user experience and engagement. Notably, the dashboard's user-friendly interface allows employees to actively participate in their learning journey, while the machine learning model generates personalized training recommendations based on their progress and needs. In summary, this research provides a practical and innovative solution to the challenge of online training assessment at PT XYZ. By combining data visualization techniques and machine learning algorithms, the developed tools significantly enhance the efficiency and effectiveness of training programs. These findings contribute valuable insights into online training assessment methodologies and pave the way for improved learning experiences in the digital age.


Data Visualization; Machine Learning Model; Classification; Employee Training

Full Text:



World Health Organization, “WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 March 2020,”

M. Mofijur et al., “Impact of COVID-19 on the social, economic, environmental and energy domains: Lessons learnt from a global pandemic,” Sustain Prod Consum, vol. 26, pp. 343–359, Apr. 2021, doi: 10.1016/j.spc.2020.10.016.

World Economic Outlook, “Global economy on firmer ground, but with divergent recoveries amid high uncertainty,”

S. Navisa, Luqman Hakim, and Aulia Nabilah, “Komparasi Algoritma Klasifikasi Genre Musik pada Spotify Menggunakan CRISP-DM,” Jurnal Sistem Cerdas, vol. 4, no. 2, pp. 114–125, Aug. 2021, doi: 10.37396/jsc.v4i2.162.

R. Rafiq, M. G. McNally, Y. Sarwar Uddin, and T. Ahmed, “Impact of working from home on activity-travel behavior during the COVID-19 Pandemic: An aggregate structural analysis,” Transp Res Part A Policy Pract, vol. 159, pp. 35–54, May 2022, doi: 10.1016/j.tra.2022.03.003.

M. J. Beck and D. A. Hensher, “Insights into the impact of COVID-19 on household travel and activities in Australia – The early days of easing restrictions,” Transp Policy (Oxf), vol. 99, pp. 95–119, Dec. 2020, doi: 10.1016/j.tranpol.2020.08.004.

Yefta Christopherus Asia Sanjaya and Rizal Setyo Nugroho, “Indonesia Disebut Sudah Endemi Covid-19, Ini Bedanya dengan Pandemi,”

Jatinder Kumar Jha, Jatin Pandey, and Biju Varkkey, “Examining the role of perceived investment in employees’ development on work-engagement of liquid knowledge workers: Moderating effects of psychological contract,” Journal of Global Operations and Strategic Sourcing, vol. 12, no. 2, Nov. 2018.

Carl Dahlman, Sam Mealy, and Martin Wermelinger, “HARNESSING THE DIGITAL ECONOMY FOR DEVELOPING COUNTRIES,” 334, 2016., “COVID-19 di Indonesia Mulai Berangsur-angsur Menjadi Endemi, Apa Artinya?,” .

P. C. Sen, M. Hajra, and M. Ghosh, “Supervised Classification Algorithms in Machine Learning: A Survey and Review,” 2020, pp. 99–111. doi: 10.1007/978-981-13-7403-6_11.

J. R. Zech, M. A. Badgeley, M. Liu, A. B. Costa, J. J. Titano, and E. K. Oermann, “Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study,” PLoS Med, vol. 15, no. 11, p. e1002683, Nov. 2018, doi: 10.1371/journal.pmed.1002683.

C. R. Dhivyaa, K. Sangeetha, M. Balamurugan, S. Amaran, T. Vetriselvi, and P. Johnpaul, “Skin lesion classification using decision trees and random forest algorithms,” J Ambient Intell Humaniz Comput, Nov. 2020, doi: 10.1007/s12652-020-02675-8.

S. B. Kotsiantis, “Decision trees: a recent overview,” Artif Intell Rev, vol. 39, no. 4, pp. 261–283, Apr. 2013, doi: 10.1007/s10462-011-9272-4.

M. Marudi, I. Ben-Gal, and G. Singer, “A decision tree-based method for ordinal classification problems,” IISE Trans, pp. 1–15, Jul. 2022, doi: 10.1080/24725854.2022.2081745.

M. Belgiu and L. Drăguţ, “Random forest in remote sensing: A review of applications and future directions,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 114, pp. 24–31, Apr. 2016, doi: 10.1016/j.isprsjprs.2016.01.011.

R. Valavi, J. Elith, J. J. Lahoz‐Monfort, and G. Guillera‐Arroita, “Modelling species presence‐only data with random forests,” Ecography, vol. 44, no. 12, pp. 1731–1742, Dec. 2021, doi: 10.1111/ecog.05615.

H. S. Al-Hyari, “Job Security as a Mediating Variable between Innovative Leadership and Innovative Work Behavior among Employees,” Journal of System and Management Sciences, vol. 13, no. 1, pp. 532–574, 2023, doi: 10.33168/JSMS.2023.0128.

B. Carneiro da Rocha and R. Timoteo de Sousa Junior, “Identifying Bank Frauds Using CRISP-DM and Decision Trees,” International Journal of Computer Science and Information Technology, vol. 2, no. 5, pp. 162–169, Oct. 2010, doi: 10.5121/ijcsit.2010.2512.

N. P. Dileep, P. V. Sarma, R. Prasannachandran, V. Surendran, and M. M. Shaijumon, “Electrostatically Coupled Nanostructured Co(OH) 2 –MoS 2 Heterostructures for Enhanced Alkaline Hydrogen Evolution,” ACS Appl Nano Mater, vol. 4, no. 7, pp. 7206–7212, Jul. 2021, doi: 10.1021/acsanm.1c01163.

C. Chen, Y. Zuo, W. Ye, X. Li, Z. Deng, and S. P. Ong, “A Critical Review of Machine Learning of Energy Materials,” Adv Energy Mater, vol. 10, no. 8, Feb. 2020, doi: 10.1002/aenm.201903242.

W. Chong-Wen, L. Sha-Sha, and E. Xu, “Predictors of rapid eye movement sleep behavior disorder in patients with Parkinson’s disease based on random forest and decision tree,” PLoS One, vol. 17, no. 6, p. e0269392, Jun. 2022, doi: 10.1371/journal.pone.0269392.

M. Aufar, R. Andreswari, and D. Pramesti, “Sentiment Analysis on Youtube Social Media Using Decision Tree and Random Forest Algorithm: A Case Study,” in 2020 International Conference on Data Science and Its Applications (ICoDSA), IEEE, Aug. 2020, pp. 1–7. doi: 10.1109/ICoDSA50139.2020.9213078.

P. Appiahene, Y. M. Missah, and U. Najim, “Predicting Bank Operational Efficiency Using Machine Learning Algorithm: Comparative Study of Decision Tree, Random Forest, and Neural Networks,” Advances in Fuzzy Systems, vol. 2020, pp. 1–12, Jul. 2020, doi: 10.1155/2020/8581202.

J. S. Saltz, “CRISP-DM for Data Science: Strengths, Weaknesses and Potential Next Steps,” in 2021 IEEE International Conference on Big Data (Big Data), IEEE, Dec. 2021, pp. 2337–2344. doi: 10.1109/BigData52589.2021.9671634.

B. Carneiro da Rocha and R. Timoteo de Sousa Junior, “Identifying Bank Frauds Using CRISP-DM and Decision Trees,” International Journal of Computer Science and Information Technology, vol. 2, no. 5, pp. 162–169, Oct. 2010, doi: 10.5121/ijcsit.2010.2512.

Layth Almahadeen, Murat Akkaya, and Arif Sari, “Mining Student Data Using CRISP-DM Model,” International Journal of Computer Science and Information Security , vol. 15, no. 2, pp. 305–316, Feb. 2017.

Rudy Herteno, “Visualisasi Secara Spasial Cluster Kerusakan Sarana dan Prasarana Sekolah,” Journal Speed, vol. 8, no. 2, pp. 61–68, 2016.

Dita Munawwaroh, Arum, and H. Primandari, “Implementasi 28-Dm Model Menggunakan Metode Decision Tree Dengan Algoritma Cart Untuk Prediksi Lila Ibu Hamil Berpotensi Gizi Kurang,” Delta: Jurnal Ilmiah Pendidikan Matematika, vol. 10, no. 2, pp. 367–380, 2022.

H. A. Parhusip, S. Trihandaru, A. H. Heriadi, P. P. Santosa, and M. D. Puspasari, “Data Exploration Using Tableau and Principal Component Analysis,” JOIV : International Journal on Informatics Visualization, vol. 6, no. 4, p. 911, Dec. 2022, doi: 10.30630/joiv.6.4.952.

Z. N. I. Zailan, S. A. Mostafa, A. I. Abdulmaged, Z. Baharum, M. M. Jaber, and R. Hidayat, “Deep Learning Approach for Prediction of Brain Tumor from Small Number of MRI Images,” JOIV : International Journal on Informatics Visualization, vol. 6, no. 2–2, p. 581, Aug. 2022, doi: 10.30630/joiv.6.2.987.

C. Schröer, F. Kruse, and J. M. Gómez, “A Systematic Literature Review on Applying CRISP-DM Process Model,” Procedia Comput Sci, vol. 181, pp. 526–534, 2021, doi: 10.1016/j.procs.2021.01.199.

D. Aryanti and J. Setiawan, “Visualisasi Data Penjualan dan Produksi PT Nitto Alam Indonesia Periode 2014-2018,” Ultima InfoSys, vol. 9, no. 2, pp. 86–91, Mar. 2019, doi: 10.31937/si.v9i2.991.

R. S. Oetama, T. T. Heng, and D. Tjahjana, “Sebuah Pola Cluster Geospatial Eksplorasi Kejahatan Narkoba di DKI Jakarta,” Ultima InfoSys : Jurnal Ilmu Sistem Informasi, vol. 11, no. 1, pp. 57–62, Jul. 2020, doi: 10.31937/si.v9i1.1514.

P. Afikah, I. R. Affandi, and F. N. Hasan, “Implementasi Business Intelligence Untuk Menganalisis Data Kasus Virus Corona di Indonesia Menggunakan Platform Tableau,” Pseudocode, vol. 9, no. 1, pp. 25–32, Mar. 2022, doi: 10.33369/pseudocode.9.1.25-32.

C. Goh, “Data Dashboarding in Accounting using Tableau,” J Econ Bus, vol. 6, no. 1, Mar. 2023, doi: 10.31014/aior.1992.06.01.502.

W. Budiaji, “Penerapan Reproducible Research pada RStudio dengan Bahasa R dan Paket Knitr,” Khazanah Informatika : Jurnal Ilmu Komputer dan Informatika, vol. 5, no. 1, pp. 1–5, Jun. 2019, doi: 10.23917/khif.v5i1.7202.

A. Ghosh and R. Maiti, “Soil erosion susceptibility assessment using logistic regression, decision tree and random forest: study on the Mayurakshi river basin of Eastern India,” Environ Earth Sci, vol. 80, no. 8, p. 328, Apr. 2021, doi: 10.1007/s12665-021-09631-5.

X. Zhou, P. Lu, Z. Zheng, D. Tolliver, and A. Keramati, “Accident Prediction Accuracy Assessment for Highway-Rail Grade Crossings Using Random Forest Algorithm Compared with Decision Tree,” Reliab Eng Syst Saf, vol. 200, p. 106931, Aug. 2020, doi: 10.1016/j.ress.2020.106931.

T. Prasandy, K. Nurkhasanah, M. P. Sari, and T. R. Fazry, “Perbandingan Hasil Penggunaan Metode Decision Tree Dan Random Tree Pada Data Training Aplikasi Pencarian Tukang,” Ultima InfoSys : Jurnal Ilmu Sistem Informasi, vol. 10, no. 2, pp. 93–97, Jan. 2020, doi: 10.31937/si.v10i2.1166.