Concept and Design of Anthropomorphic Robot Hand with a Finger Movement Mechanism based on a Lever for Humanoid Robot T-FLoW 3.0

Kevin Apriandy - Politeknik Elektronika Negeri Surabaya (PENS), Surabaya, 60111, Indonesia
Faiz Ulurrasyadi - Politeknik Elektronika Negeri Surabaya (PENS), Surabaya, 60111, Indonesia
Raden Dewanto - Politeknik Elektronika Negeri Surabaya (PENS), Surabaya, 60111, Indonesia
Bima Dewantara - Politeknik Elektronika Negeri Surabaya (PENS), Surabaya, 60111, Indonesia
Dadet Pramadihanto - Politeknik Elektronika Negeri Surabaya (PENS), Surabaya, 60111, Indonesia

Citation Format:



This work described a concept and design of an anthropomorphic robot hand for the T-FLoW 3.0 humanoid robot, which featured a mechanism based on a lever as its finger movement. This work aimed to provide an affordable, modular, lightweight, human-like robot hand with a mechanism that minimizes mechanical slippage. The proposed mechanism works based on the push/pull of a lever attached to the finger to generate its finger flexion/extension movement. The finger’s lever is pushed/pulled through a servo horn and a rigid bar by the affordable TowerPro MG90S micro-servo. Our hand is developed only as necessary to become close to human hands by only applying five fingers and six joints, where each joint has its actuator. The combination of 3D printing technology with PLA filament accelerates and streamlines the manufacturing process, provides a realistic appearance, and achieves a lightweight, affordable, and easy maintenance product. Structural analysis simulations show that our finger design constructed with PLA material could withstand a load of about 30 N. We verified our finger mechanism by repeatedly flexing and extending the finger 30 times, and the results showed that the finger movements could be performed well. Our hand offered excellent handling for the mechanical issues brought on by finger movements, one of the issues that robot hand researchers have encountered. Our work could provide significant benefits to the T-FLoW 3.0 developers in enhancing the ability of humanoid robots involving hands, such as grasping and manipulating objects.


Humanoid robot FLoW; Anthropomorphic robot hand; Finger movement mechanism based on a lever; Kinematics analysis; Static structural analysis;

Full Text:



V. C. P. H. Putra, K. I. Apriandy, D. Pramadihanto, and A. R. Barakbah, “FLoW-Vision: Object Recognition and Pose Estimation System based on Three-Dimensional (3D) Computer Vision,” in 2021 International Electronics Symposium (IES), Surabaya, Indonesia: IEEE, Sep. 2021, pp. 593–599. doi: 10.1109/IES53407.2021.9593994.

W. Dewandhana, K. I. Apriandy, B. S. B. Dewantara, and D. Pramadihanto, “Forward Kinematics with Full-Arm Analysis on ‘T-FLoW’ 3.0 Humanoid Robot,” in 2021 International Electronics Symposium (IES), Surabaya, Indonesia: IEEE, Sep. 2021, pp. 356–361. doi: 10.1109/IES53407.2021.9594017.

F. Ulurrasyadi, R. S. Dewanto, A. Barakbah, and D. Pramadihanto, “Walking Gait Learning for ‘T-FLoW’ Humanoid Robot Using Rule-Based Learning,” in 2021 International Electronics Symposium (IES), Surabaya, Indonesia: IEEE, Sep. 2021, pp. 527–531. doi: 10.1109/IES53407.2021.9593960.

C. Piazza, G. Grioli, M. G. Catalano, and A. Bicchi, “A Century of Robotic Hands,” Annu. Rev. Control Robot. Auton. Syst., vol. 2, no. 1, pp. 1–32, May 2019, doi: 10.1146/annurev-control-060117-105003.

D. Pavlichenko, D. Rodriguez, M. Schwarz, C. Lenz, A. S. Periyasamy, and S. Behnke, “Autonomous Dual-Arm Manipulation of Familiar Objects,” 2018, doi: 10.48550/ARXIV.1811.08716.

A. K. Pandey and R. Gelin, “A Mass-Produced Sociable Humanoid Robot: Pepper: The First Machine of Its Kind,” IEEE Robot. Autom. Mag., vol. 25, no. 3, pp. 40–48, Sep. 2018, doi: 10.1109/MRA.2018.2833157.

J. A. E. Hughes, P. Maiolino, and F. Iida, “An anthropomorphic soft skeleton hand exploiting conditional models for piano playing,” Sci. Robot., vol. 3, no. 25, p. eaau3098, Dec. 2018, doi: 10.1126/scirobotics.aau3098.

S. Shigemi, “ASIMO and Humanoid Robot Research at Honda,” in Humanoid Robotics: A Reference, A. Goswami and P. Vadakkepat, Eds., Dordrecht: Springer Netherlands, 2019, pp. 55–90. doi: 10.1007/978-94-007-6046-2_9.

H. Stuart, S. Wang, O. Khatib, and M. R. Cutkosky, “The Ocean One hands: An adaptive design for robust marine manipulation,” Int. J. Robot. Res., vol. 36, no. 2, pp. 150–166, Feb. 2017, doi: 10.1177/0278364917694723.

M. Controzzi et al., “Progress Towards the Development of the DeTOP Hand Prosthesis: A Sensorized Transradial Prosthesis for Clinical Use,” in Converging Clinical and Engineering Research on Neurorehabilitation III, L. Masia, S. Micera, M. Akay, and J. L. Pons, Eds., in Biosystems & Biorobotics, vol. 21. Cham: Springer International Publishing, 2019, pp. 103–106. doi: 10.1007/978-3-030-01845-0_20.

T. Wang, Z. Geng, B. Kang, and X. Luo, “Eagle Shoal: A new designed modular tactile sensing dexterous hand for domestic service robots,” in 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada: IEEE, May 2019, pp. 9087–9093. doi: 10.1109/ICRA.2019.8793842.

M. Bartoš, V. Bulej, M. Bohušík, J. Stanček, V. Ivanov, and P. Macek, “An overview of robot applications in automotive industry,” Transp. Res. Procedia, vol. 55, pp. 837–844, 2021, doi: 10.1016/j.trpro.2021.07.052.

Y.-J. Kim, H. Song, and C.-Y. Maeng, “BLT Gripper: An Adaptive Gripper With Active Transition Capability Between Precise Pinch and Compliant Grasp,” IEEE Robot. Autom. Lett., vol. 5, no. 4, pp. 5518–5525, Oct. 2020, doi: 10.1109/LRA.2020.3008137.

H. Park, M. Kim, B. Lee, and D. Kim, “Design and Experiment of an Anthropomorphic Robot Hand for Variable Grasping Stiffness,” IEEE Access, vol. 9, pp. 99467–99479, 2021, doi: 10.1109/ACCESS.2021.3094060.

T. Yoneda, D. Morihiro, and R. Ozawa, “Development of a multifingered robotic hand with the thenar grasp function,” Adv. Robot., vol. 34, no. 10, pp. 661–673, May 2020, doi: 10.1080/01691864.2020.1751706.

A. Katsumaru and R. Ozawa, “Design of 3D-printed assembly mechanisms based on special wooden joinery techniques and its application to a robotic hand,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France: IEEE, May 2020, pp. 9981–9987. doi: 10.1109/ICRA40945.2020.9197475.

D.-H. Lee, J.-H. Park, S.-W. Park, M.-H. Baeg, and J.-H. Bae, “KITECH-Hand: A Highly Dexterous and Modularized Robotic Hand,” IEEEASME Trans. Mechatron., vol. 22, no. 2, pp. 876–887, Apr. 2017, doi: 10.1109/TMECH.2016.2634602.

L. Liow, A. B. Clark, and N. Rojas, “OLYMPIC: A Modular, Tendon-Driven Prosthetic Hand with Novel Finger and Wrist Coupling Mechanisms,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 299–306, Apr. 2020, doi: 10.1109/LRA.2019.2956636.

M. A. Abdul Wahit, S. A. Ahmad, M. H. Marhaban, C. Wada, and L. I. Izhar, “3D Printed Robot Hand Structure Using Four-Bar Linkage Mechanism for Prosthetic Application,” Sensors, vol. 20, no. 15, p. 4174, Jul. 2020, doi: 10.3390/s20154174.

U. Kim et al., “Integrated linkage-driven dexterous anthropomorphic robotic hand,” Nat. Commun., vol. 12, no. 1, p. 7177, Dec. 2021, doi: 10.1038/s41467-021-27261-0.

A. Nurpeissova, T. Tursynbekov, and A. Shintemirov, “An Open-Source Mechanical Design of ALARIS Hand: A 6-DOF Anthropomorphic Robotic Hand,” in 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China: IEEE, May 2021, pp. 1177–1183. doi: 10.1109/ICRA48506.2021.9561977.

S. H. Jeong, K.-S. Kim, and S. Kim, “Designing Anthropomorphic Robot Hand With Active Dual-Mode Twisted String Actuation Mechanism and Tiny Tension Sensors,” IEEE Robot. Autom. Lett., vol. 2, no. 3, pp. 1571–1578, Jul. 2017, doi: 10.1109/LRA.2017.2647800.

W. Ryu, Y. Choi, Y. J. Choi, and S. Lee, “Development of a Lightweight Prosthetic Hand for Patients with Amputated Fingers,” Appl. Sci., vol. 10, no. 10, p. 3536, May 2020, doi: 10.3390/app10103536.

G. P. Kontoudis, M. Liarokapis, and K. G. Vamvoudakis, “A Compliant, Underactuated Finger for Anthropomorphic Hands,” in 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, ON, Canada: IEEE, Jun. 2019, pp. 682–688. doi: 10.1109/ICORR.2019.8779435.

G. P. Kontoudis, M. Liarokapis, K. G. Vamvoudakis, and T. Furukawa, “An Adaptive Actuation Mechanism for Anthropomorphic Robot Hands,” Front. Robot. AI, vol. 6, p. 47, Jul. 2019, doi: 10.3389/frobt.2019.00047.

K. I. Apriandy, B. Sena Bayu Dewantara, R. S. Dewanto, and D. Pramadihanto, “Mechanical Design and Forward Kinematics Analysis of T-FLoW 3.0 Prosthetic Robot Hand: Lever-based Finger Movement Mechanism,” in 2022 International Electronics Symposium (IES), Surabaya, Indonesia: IEEE, Aug. 2022, pp. 343–348. doi: 10.1109/IES55876.2022.9888385.

Y. Bachtiar, R. D. Pristovani, S. Dewanto, and D. Pramadihanto, “Mechanical and Forward Kinematic Analysis of Prosthetic Robot Hand for T-FLoW 3.0,” in 2018 International Electronics Symposium on Engineering Technology and Applications (IES-ETA), Bali: IEEE, Oct. 2018, pp. 275–280. doi: 10.1109/ELECSYM.2018.8615522.

P. Cerveri, N. Lopomo, A. Pedotti, and G. Ferrigno, “Derivation of Centers and Axes of Rotation for Wrist and Fingers in a Hand Kinematic Model: Methods and Reliability Results,” Ann. Biomed. Eng., vol. 33, no. 3, pp. 402–412, Jan. 2005, doi: 10.1007/s10439-005-1743-9.

G. Stillfried, “Movement model of a human hand based on magnetic resonance imaging (MRI)”.

S. Pheasant and C. M. Haslegrave, Bodyspace: Anthropometry, Ergonomics and the Design of Work, 3rd ed. CRC Press, 2018. doi: 10.1201/9781315375212.

F. Cini, V. Ortenzi, P. Corke, and M. Controzzi, “On the choice of grasp type and location when handing over an object,” Sci. Robot., vol. 4, no. 27, p. eaau9757, Feb. 2019, doi: 10.1126/scirobotics.aau9757.

L. Somappa et al., “Design and Development of a Robotic Hand with Embedded Sensors Using 3D Printing Technology,” Trans. Indian Natl. Acad. Eng., vol. 6, no. 2, pp. 273–281, Jun. 2021, doi: 10.1007/s41403-021-00198-y.

S. Farah, D. G. Anderson, and R. Langer, “Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review,” Adv. Drug Deliv. Rev., vol. 107, pp. 367–392, Dec. 2016, doi: 10.1016/j.addr.2016.06.012.