k-Means Cluster-based Random Undersampling and Meta-Learning Approach for Village Development Status Classification
DOI: http://dx.doi.org/10.30630/joiv.7.2.989
Abstract
Keywords
Full Text:
PDFReferences
K. Cheng, S. Gao, W. Dong, X. Yang, Q. Wang, and H. Yu, “Boosting label weighted extreme learning machine for classifying multi-label imbalanced data,†Neurocomputing, vol. 403, pp. 360–370, Aug. 2020, doi: 10.1016/j.neucom.2020.04.098.
A. Anil and S. R. Singh, “Effect of class imbalance in heterogeneous network embedding: An empirical study,†J Informetr, vol. 14, no. 2, p. 101009, May 2020, doi: 10.1016/j.joi.2020.101009.
E. Mortaz, “Imbalance accuracy metric for model selection in multi-class imbalance classification problems,†Knowl Based Syst, vol. 210, p. 106490, Dec. 2020, doi: 10.1016/j.knosys.2020.106490.
H. He and E. A. Garcia, “Learning from Imbalanced Data,†Curr Top Med Chem, vol. 8, no. 18, pp. 1691–1709, 2008, doi: 10.2174/156802608786786589.
J. M. Johnson and T. M. Khoshgoftaar, “Survey on deep learning with class imbalance,†J Big Data, vol. 6, no. 1, pp. 1–54, Dec. 2019, doi: 10.1186/s40537-019-0192-5.
A. Ali, S. M. Shamsuddin, and A. L. Ralescu, “Classification with class imbalance problem: A review,†International Journal of Advances in Soft Computing and its Applications, vol. 7, no. 3, pp. 176–204, 2015.
S. Kotsiantis, D. Kanellopoulos, and P. Pintelas, “Handling imbalanced datasets : A review,†GETS International Transactions on Computer Science and Engineering, vol. 30, no. 1, pp. 25–36, 2010, doi: 10.1007/978-0-387-09823-4_45.
Han and Kamber, Data Mining Concepts and Techniques Third Edition, 3rd ed., vol. 1. USA: Morgan Kaufmann Publishers is an imprint of Elsevier, 2012. doi: 10.1017/CBO9781107415324.004.
J. Sun, H. Li, H. Fujita, B. Fu, and W. Ai, “Class-imbalanced dynamic financial distress prediction based on Adaboost-SVM ensemble combined with SMOTE and time weighting,†Information Fusion, vol. 54, pp. 128–144, Feb. 2020, doi: 10.1016/j.inffus.2019.07.006.
J. Song, X. Lu, and X. Wu, “An Improved AdaBoost Algorithm for Unbalanced Classification Data,†Sixth International Conference on Fuzzy Systems and Knowledge Discovery, pp. 109–113, 2009, doi: 10.1109/FSKD.2009.608.
Y. Sun, M. S. Kamel, A. K. C. Wong, and Y. Wang, “Cost-sensitive boosting for classification of imbalanced data,†Pattern Recognit, vol. 40, no. 12, pp. 3358–3378, Dec. 2007, doi: 10.1016/j.patcog.2007.04.009.
H. Prasetyo and A. Purwarianti, “Comparison of distance measures for clustering data with mix attribute types for Indonesian potential-based regional grouping,†in 2014 International Conference on Information Technology Systems and Innovation (ICITSI), Nov. 2014, pp. 13–18. doi: 10.1109/ICITSI.2014.7048230.
M. S. Sari, D. Safitri, and Sugito, “Klasifikasi Wilayah Desa-Perdesaan dan Desa-Perkotaan Wilayah Kabupaten Semarang dengan Support Vector Machine,†Jurnal Gaussian, vol. 3, no. 4, pp. 751–760, 2014, Accessed: Jun. 20, 2021. [Online]. Available: https://ejournal3.undip.ac.id/index.php/gaussian/article/view/8086
E. Siswanto, Suprapedi, and Purwanto, “Metode Sample Boostraping Pada K-Nearest Neighbor Untuk Klasifikasi Status Desa,†Jurnal Teknologi Informasi, vol. 14, pp. 13–23, 2018.
A. Mahmud, A. Pangestika, A. P. Ramadhanty, G. M. Putra, G. S. N. D. S. Putri, and R. Nooraeni, “Klasifikasi Status Desa/Kelurahan DIY (Yogyakarta) Menggunakan Model Decision Tree (Studi Kasus Data Praktik Kerja Lapangan Politeknik Statistika STIS Tahun 2020),†Engineering, MAthematics and Computer Science (EMACS) Journal, vol. 3, no. 1, pp. 33–41, Feb. 2021, doi: 10.21512/emacsjournal.v3i1.6787.
N. S. Kumar, K. N. Rao, A. Govardhan, K. S. Reddy, and A. M. Mahmood, “Undersampled K-means approach for handling imbalanced distributed data,†Progress in Artificial Intelligence, vol. 3, no. 1, pp. 29–38, Aug. 2014, doi: 10.1007/s13748-014-0045-6.
Jing-Hao Xue and P. Hall, “Why Does Rebalancing Class-Unbalanced Data Improve AUC for Linear Discriminant Analysis?,†IEEE Trans Pattern Anal Mach Intell, vol. 37, no. 5, pp. 1109–1112, May 2015, doi: 10.1109/TPAMI.2014.2359660.
L. Gautheron, A. Habrard, E. Morvant, and M. Sebban, “Metric Learning from Imbalanced Data with Generalization Guarantees,†Pattern Recognit Lett, vol. 133, pp. 298–304, May 2020, doi: 10.1016/j.patrec.2020.03.008.
G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and G. Bing, “Learning from class-imbalanced data: Review of methods and applications,†Expert Syst Appl, vol. 73, pp. 220–239, May 2017, doi: 10.1016/j.eswa.2016.12.035.
J. Ri and H. Kim, “G-mean based extreme learning machine for imbalance learning,†Digit Signal Process, vol. 98, p. 102637, Mar. 2020, doi: 10.1016/j.dsp.2019.102637.
W. Wang and D. Sun, “The improved AdaBoost algorithms for imbalanced data classification,†Inf Sci (N Y), vol. 563, pp. 358–374, Jul. 2021, doi: 10.1016/j.ins.2021.03.042.