Deep Learning Approach for Prediction of Brain Tumor from Small Number of MRI Images
DOI: http://dx.doi.org/10.30630/joiv.6.2.987
Abstract
Keywords
Full Text:
PDFReferences
T. F. Drumond, T. Viéville, and F. Alexandre, “Bio-inspired analysis of deep learning on not-so-big data using data-prototypes,†Frontiers in computational neuroscience, 12, 100, 2019.
M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R. Wald, and E. Muharemagic, "Deep learning applications and challenges in big data analytics," J. Big Data, vol. 2, no. 1, pp. 1–21, 2015.
C. Gleason and S. Devaskar, "Brain Tumors," Brain Tumors, vol. 344, no. 2, pp. 114–123, 2012.
S. V Nallamala, S. H., Mishra, P., & Koneru, "Breast Cancer Detection using Machine Learning Way," Int. J. Recent Technol. Eng., 2019.
Y. M. Saad, A. E., Elsayed, A. R., Mahmoud, S. E., & Elkheshen, "Breast Cancer Detection Using Machine Learning.," 2020.
M. Bharati, S., Podder, P., & Mondal, "Artificial Neural Network Based Breast Cancer Screening: A Comprehensive Review," arXiv Prepr. arXiv, vol. 2006.01767, 2020.
M. E. Paoletti, J. M. Haut, J. Plaza, and A. Plaza, "A new deep convolutional neural network for fast hyperspectral image classification," ISPRS J. Photogramm. Remote Sens., vol. 145, pp. 120–147, 2018.
G. Masi, I., Trần, A. T., Hassner, T., Leksut, J. T., & Medioni, "Do we really need to collect millions of faces for effective face recognition?," Eur. Conf. Comput. vision. Springer, Cham, pp. 579–596, 2016.
S. A. Badarudin, P. M., Ghazali, R., Alahdal, A. M. A., Alduais, N. A. M., & Mostafa, "Classification of Breast Cancer Patients Using Neural Network Technique," J. Soft Comput. Data Min., vol. 2, no. 1, pp. 13–19, 2021.
T. R. Razzaq, H. H., Ghazali, R., George, L. E., Mostafa, S. A., Al-Janabi, A. A., Fadel, A. H., ... & Hamza, "Empirical Analysis of a New Immunohistochemical Breast Cancer Images Dataset," Des. Eng., pp. 21–36, 2021.
O. Kim-Soon, N., Abdulmaged, A. I., Mostafa, S. A., Mohammed, M. A., Musbah, F. A., Ali, R. R., & Geman, "A framework for analyzing the relationships between cancer patient satisfaction, nurse care, patient attitude, and nurse attitude in healthcare systems," J. Ambient Intell. Humaniz. Comput., pp. 1–18, 2021.
N. Razali, S. A. Mostafa, A. Mustapha, M. H. A. Wahab, and N. A. Ibrahim, "Risk Factors of Cervical Cancer using Classification in Data Mining," J. Phys. Conf. Ser., vol. 1529, no. 2, 2020.
S. M. Saxena, Priyansh, Akshat Maheshwari, "Predictive modeling of brain tumor: A Deep learning approach," in Innovations in Computational Intelligence and Computer Vision, Springer, 2021, pp. 275–285.
S. Biswas, "Automatic Brain Tumor Detection and Classification On Mri Images Using Machine Learning Techniques," Maulana Abul Kalam Azad University of Techn," 2020.
D. D. Macdonald and G. R. Engelhardt, "Predictive modeling of corrosion," Shreir's Corros., no. January, pp. 1630–1679, 2010.
Y. Bazi, M. M. A. Rahhal, H. Alhichri, and N. Alajlan, "Simple yet effective fine-tuning of deep cnns using an auxiliary classification loss for remote sensing scene classification," Remote Sens., vol. 11, no. 24, 2019.
Nalawade, S., Murugesan, G.K., Vejdani-Jahromi, M., Fisicaro, R.A., Yogananda, C.G.B., Wagner, B., Mickey, B., Maher, E., Pinho, M.C., Fei, B. and Madhuranthakam, A.J. "Classification of brain tumor isocitrate dehydrogenase status using MRI and deep learning," J. Med. Imaging, 2019.
L. Chato and S. Latifi, "Machine Learning and Deep Learning Techniques to Predict Overall Survival of Brain Tumor Patients Using MRI Images," Proc. - 2017 IEEE 17th Int. Conf. Bioinforma. Bioeng. BIBE 2017, vol. 2018-Janua, no. October 2017, pp. 9–14, 2017.
J. Stember and H. Shalu, " Deep reinforcement learning to detect brain lesions on MRI: a proof-of-concept application of reinforcement learning to medical images." arXiv preprint arXiv:2008.02708, 2020.
P. Afshar, A. Mohammadi, and K. N. Plataniotis, "Bayescap: A bayesian approach to brain tumor classification using capsule networks," IEEE Signal Process. Lett., vol. 27, pp. 2024–2028, 2020.
A. Azevedo and M. F. Santos, “KDD , SEMMA AND CRISP-DM : A parallel overview Ana Azevedo and M . F . Santos,†IADIS Eur. Conf. Data Min., pp. 182–185, 2008.
B. S. Meeting and P. Chapman, "The CRISP-DM User Guide," Cris. User Guid., p. 14, 1999.
S. Moro, R. M. S. Laureano, and P. Cortez, "Using data mining for bank direct marketing: An application of the CRISP-DM methodology," ESM 2011 - 2011 Eur. Simul. Model. Conf. Model. Simul. 2011, pp. 117–121, 2011.
N. Chakrabarty "Brain MRI images for brain tumor detection.", (2019, April 14). Retrieved May 09, 2020, from https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection.
K.,Simonyan, & A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014.
Q. Guan, Y. Wang, B. Ping, D. Li, J. Du, Y. Qin, and J. Xiang, "Deep convolutional neural network VGG-16 model for differential diagnosing of papillary thyroid carcinomas in cytological images: a pilot study," Journal of Cancer, 10(20), 4876, 2019.
C. A. Hartanto, and L. Rahadianti, “Single Image Dehazing Using Deep Learning,†JOIV: International Journal on Informatics Visualization, 5(1), 76-82, 2021.
Z. Liu, C. Yang, J. Huang, S. Liu, Y. Zhuo, and X. Lu, “Deep learning framework based on integration of S-Mask R-CNN and Inception-v3 for ultrasound image-aided diagnosis of prostate cancer,†Future Generation Computer Systems, 114, 358-367, 2021.
A. B. M. Wijaya, D. S. Ikawahyuni, R. Gea, and F. Maedjaja, “Role Comparison between Deep Belief Neural Network and Neuro Evolution of Augmenting Topologies to Detect Diabetes,†JOIV: International Journal on Informatics Visualization, 5(2), 156-161, 2021.
P. N. Srinivasu, J. G. SivaSai, M. F. Ijaz, A. K. Bhoi, W. Kim, and J. J. Kang, “Classification of skin disease using deep learning neural networks with MobileNet V2 and LSTM,†Sensors, 21(8), 2852, 2021.
M., Elhoseny, M. A., Mohammed, S. A., Mostafa, K. H., Abdulkareem, M. S., Maashi, B., Garcia-Zapirain, and M. S. Maashi, “A new multi-agent feature wrapper machine learning approach for heart disease diagnosis,†Comput. Mater. Contin, 67, 51-71, 2021.
G. S. Saragih, Z. Rustam, D. Aldila, R. Hidayat, R. E. Yunus, and J. Pandelaki, “Ischemic Stroke Classification using Random Forests Based on Feature Extraction of Convolutional Neural Networks. International Journal on Advanced Science, Engineering and Information Technology,†10(5), 2177-2182, 2020.
A. Hidaka and T. Kurita, "Consecutive Dimensionality Reduction by Canonical Correlation Analysis for Visualization of Convolutional Neural Networks," Proc. Isc. Int. Symp. Stoch. Syst. Theory its Appl., vol. 2017, no. 0, pp. 160–167, 2017.