Aircraft Flight Movement Anomaly Detection using Automatic Dependent Surveillance-Broadcast
DOI: http://dx.doi.org/10.30630/joiv.6.4.948
Abstract
Keywords
Full Text:
PDFReferences
A. A. Ajhari, R. Ibrahim, A. Pramodana, J. S. Pramudito, J. R. Tasyam, and W. Hilmy, “ADS-B Mobile Ground Station Receiver Flight Surveillance Architecture,†in 2021 International Conference on Artificial Intelligence and Computer Science Technology (ICAICST), 2021, pp. 174–178.
V. Hodge and J. Austin, “A survey of outlier detection methodologies,†Artif. Intell. Rev., vol. 22, no. 2, pp. 85–126, 2004.
E. Habler and A. Shabtai, “Using LSTM encoder-decoder algorithm for detecting anomalous ADS-B messages,†Comput. Secur., vol. 78, pp. 155–173, 2018.
T. Li, B. Wang, F. Shang, J. Tian, and K. Cao, “ADS-B Data Attack Detection Based on Generative Adversarial Networks,†in International Symposium on Cyberspace Safety and Security, 2019, pp. 323–336.
J. Wang, Y. Zou, and J. Ding, “ADS-B spoofing attack detection method based on LSTM,†EURASIP J. Wirel. Commun. Netw., vol. 2020, no. 1, pp. 1–12, 2020.
T. Li, B. Wang, F. Shang, J. Tian, and K. Cao, “Dynamic temporal ADS-B data attack detection based on sHDP-HMM,†Comput. Secur., vol. 93, p. 101789, 2020.
M. Y. Pusadan, J. L. Buliali, and R. V. H. Ginardi, “Anomaly detection of flight routes through optimal waypoint,†in Journal of Physics: Conference Series, 2017, vol. 801, no. 1, p. 12041.
M. Y. Pusadan, J. L. Buliali, and R. V. H. Ginardi, “Anomaly detection on flight route using similarity and grouping approach based-on automatic dependent surveillance-broadcast,†Int. J. Adv. Intell. Informatics, vol. 5, no. 3, pp. 285–296, 2019.
M. Y. Pusadan, J. L. Buliali, and R. V. H. Ginardi, “Cluster Phenomenon to Determine Anomaly Detection of Flight Route,†Procedia Comput. Sci., vol. 161, pp. 516–526, 2019.
J. Sun, J. Ellerbroek, and J. Hoekstra, “Flight extraction and phase identification for large automatic dependent surveillance–broadcast datasets,†J. Aerosp. Inf. Syst., vol. 14, no. 10, pp. 566–572, 2017.
M. Leonardi, L. Di Gregorio, and D. Di Fausto, “Air traffic security: Aircraft classification using ADS-B message’s phase-pattern,†Aerospace, vol. 4, no. 4, p. 51, 2017.
D. Wu et al., “Custom machine learning architectures: towards realtime anomaly detection for flight testing,†in 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2018, pp. 1323–1330.
Z. Cao et al., “Improving prediction accuracy in LSTM network model for aircraft testing flight data,†in 2018 IEEE International Conference on Smart Cloud (SmartCloud), 2018, pp. 7–12.
A. Nanduri and L. Sherry, “Anomaly detection in aircraft data using Recurrent Neural Networks (RNN),†in 2016 Integrated Communications Navigation and Surveillance (ICNS), 2016, pp. 5C2-1.
A. Y. Nuryantini and B. W. Nuryadin, “Learning vector of motion using FlightRadar24 and Tracker motion analysis,†Phys. Educ., vol. 55, no. 1, p. 15019, 2019.
G. Nguyen et al., “Machine learning and deep learning frameworks and libraries for large-scale data mining: a survey,†Artif. Intell. Rev., vol. 52, no. 1, pp. 77–124, 2019.
S. Daberdaku, E. Tavazzi, and B. Di Camillo, “A combined interpolation and weighted K-nearest neighbours approach for the imputation of longitudinal ICU laboratory data,†J. Healthc. Informatics Res., vol. 4, no. 2, pp. 174–188, 2020.
D. M. Burns and C. M. Whyne, “Seglearn: A python package for learning sequences and time series,†J. Mach. Learn. Res., vol. 19, no. 1, pp. 3238–3244, 2018.
Y. Cao, J. Cao, Z. Zhou, and Z. Liu, “Aircraft Track Anomaly Detection Based on MOD-Bi-LSTM,†Electronics, vol. 10, no. 9, p. 1007, 2021.
K. M. Ting, “Confusion matrix.,†Encycl. Mach. Learn. data Min., vol. 260, 2017.
P. Bintoro and A. Harjoko, “Lampung Script Recognition Using Convolutional Neural Network,†IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 16, no. 1, pp. 23–34, 2022, [Online]. Available: https://jurnal.ugm.ac.id/ijccs/article/view/70041/33160
Y. Bai et al., “Understanding and Improving Early Stopping for Learning with Noisy Labels,†Adv. Neural Inf. Process. Syst., vol. 34, 2021, [Online]. Available: https://proceedings.neurips.cc/paper/2021/file/cc7e2b878868cbae992d1fb743995d8f-Paper.pdf.