Exploring Key Factors Influencing Blockchain Adoption in E-Government: Pilot Study
DOI: http://dx.doi.org/10.62527/joiv.8.3-2.878
Abstract
Keywords
Full Text:
PDFReferences
N. Bosma, M. Sanders, and E. Stam, “Institutions, entrepreneurship, and economic growth in Europe,” Small Bus. Econ., vol. 51, no. 2, pp. 483–499, 2018, doi: 10.1007/s11187-018-0012-x.
H. Falwadiya and S. Dhingra, “Blockchain technology adoption in government organizations: a systematic literature review,” J. Glob. Oper. Strategy. Source., 2022, doi: 10.1108/JGOSS-09-2021-0079.
U. Agarwal et al., “Blockchain Technology for Secure Supply Chain Management: A Comprehensive Review,” IEEE Access, 2022, doi:10.1108/JGOSS-09-2021-0079.
M. H. Ronaghi, “Contextualizing the impact of blockchain technology on the performance of new firms: The role of corporate governance as an intermediate outcome,” J. High Technol. Manag. Res., vol. 33, no. 2, p. 100438, 2022, doi: 10.1016/j.hitech.2022.100438.
C. S. Sung and J. Y. Park, “Understanding of blockchain-based identity management system adoption in the public sector,” J. Enterp. Inf. Manag., 2021, doi: 10.1108/JEIM-12-2020-0532.
S. Abdullah and Y. Y. Jusoh, “Blockchain Technologies in e-Government Services: A Literature Review,” in 2022 IEEE International Conference on Computing (ICOCO), IEEE, 2022, pp. 369–374. doi: 10.1109/ICOCO56118.2022.10031634.
M. S. Kamarulzaman, N. H. Hassan, N. A. A. Bakar, N. Maarop, G. A. L. N. Samy, and N. Aziz, “Factors Influencing Blockchain Adoption in Government Organization: A Proposed Framework,” in 2021 International Conference on Computer & Information Sciences (ICCOINS), IEEE, 2021, pp. 366–371. doi10.1109/ICCOINS49721.2021.9497196.
Y. Yuan and F.-Y. Wang, “Blockchain and cryptocurrencies: Model, techniques, and applications,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 48, no. 9, pp. 1421–1428, 2018, doi:10.1109/TSMC.2018.2854904.
T. A. Samad, R. Sharma, K. K. Ganguly, S. F. Wamba, and G. Jain, “Enablers to the adoption of blockchain technology in logistics supply chains: evidence from an emerging economy,” Ann. Oper. Res., vol. 327, pp. 251–291, 2023, doi: 10.1007/s10479-022-04546-1.
A. S. Yadav, N. Singh, and D. S. Kushwaha, “Evolution of Blockchain and consensus mechanisms & its real-world applications,” Multimed. Tools Appl., vol. 82, no. 22, pp. 34363–34408, 2023, doi:10.1007/s11042-023-14624-6.
C. G. Reddick, G. P. Cid, and S. Ganapati, “Determinants of blockchain adoption in the public sector: An empirical examination,” Inf. Polity, vol. 24, no. 4, pp. 379–396, 2019, doi: 10.3233/IP-190150.
E. Shava and D. Mhlanga, “Mitigating bureaucratic inefficiencies through blockchain technology in Africa,” Front. Blockchain, vol. 6, p. 1053555, 2023, doi: 10.3389/fbloc.2023.1053555.
M. R. Kabir, “Behavioural intention to adopt blockchain for a transparent and effective taxing system,” J. Glob. Oper. Strategy. Source., vol. 14, no. 1, pp. 170–201, 2021, doi: 10.1108/JGOSS-08-2020-0050.
M. S. Setyowati, N. D. Utami, A. H. Saragih, and A. Hendrawan, “Strategic factors in implementing blockchain technology in Indonesia’s value-added tax system,” Technol. Soc., vol. 72, p. 102169, 2023, doi: 10.1016/j.techsoc.2022.102169.
N. Elisa, L. Yang, F. Chao, and Y. Cao, “A framework of blockchain-based secure and privacy-preserving E-government system,” Wirel. networks, vol. 29, no. 3, pp. 1005–1015, 2023, doi: 10.1007/s11276-018-1883-0.
S. Ølnes, J. Ubacht, and M. Janssen, “Blockchain in government: Benefits and implications of distributed ledger technology for information sharing,” Government Information Quarterly, vol. 34, no. 3. Elsevier, pp. 355–364, 2017. doi: 10.1016/j.giq.2017.09.007.
S. Saxena, D. Shao, A. Nikiforova, and R. Thapliyal, “Invoking blockchain technology in e-government services: a cybernetic perspective,” Digit. Policy, Regul. Gov., vol. 24, no. 3, pp. 246–258, 2022, doi: 10.1108/DPRG-10-2021-0128.
M. Kassen, “Blockchain and e-government innovation: Automation of public information processes,” Inf. Syst., vol. 103, p. 101862, 2022, doi: 10.1016/j.is.2021.101862.
S. Singh, M. M. Sahni, and R. K. Kovid, “What drives FinTech adoption? A multi-method evaluation using an adapted technology acceptance model,” Manag. Decis., vol. 58, no. 8, pp. 1675–1697, 2020, doi: 10.1108/MD-09-2019-1318.
V. Venkatesh, J. Y. L. Thong, F. K. Y. Chan, P. J. Hu, and S. A. Brown, “Extending the two‐stage information systems continuance model: Incorporating UTAUT predictors and the role of context,” Inf. Syst. J., vol. 21, no. 6, pp. 527–555, 2011, doi: 10.1111/j.1365-2575.2011.00373.x.
M. Cimperman, M. M. Brenčič, and P. Trkman, “Analyzing older users’ home telehealth services acceptance behavior—applying an Extended UTAUT model,” Int. J. Med. Inform., vol. 90, pp. 22–31, 2016, doi: 10.1016/j.ijmedinf.2016.03.002.
I. Altawaiha, R. Atan, R. Bin Yaakob, and R. B. H. Abdullah, “Assessing and prioritizing crucial drivers for CloudIoT-based healthcare adoption: an analytic hierarchy process approach,” Int. J. Inf. Technol., pp. 1–18, 2024, doi: 10.1007/s41870-024-01742-z.
R. Sneesl, Y. Y. Jusoh, M. A. Jabar, S. Abdullah, and U. A. Bukar, “Factors Affecting the Adoption of IoT-Based Smart Campus: An Investigation Using Analytical Hierarchical Process (AHP),” Sustainability, vol. 14, no. 14, p. 8359, 2022, doi:10.3390/su14148359.
M. S. Mundottukandi, Y. Y. Jusoh, N. C. Pa, R. N. B. H. Nor, and U. A. Bukar, “Prioritizing Factors in Social Media Crisis Communication for Resilience Enhancement Using Analytical Hierarchy Process,” IEEE Access, 2024, doi: 10.1109/ACCESS.2024.3383317.
I. Altawaiha, R. Atan, R. Bin Yaakob, and R. B. H. Abdullah, “A three-step SEM-Bayesian network approach for predicting the determinants of CloudIoT-based healthcare adoption,” Int. J. Inf. Technol., pp. 1–21, 2024, doi: 10.1007/s41870-024-01743-y.
D. Choi, C. Y. Chung, T. Seyha, and J. Young, “Factors affecting organizations’ resistance to the adoption of blockchain technology in supply networks,” Sustainability, vol. 12, no. 21, p. 8882, 2020, doi:10.3390/su12218882.
S. Malik, M. Chadhar, S. Vatanasakdakul, and M. Chetty, “Factors affecting the organizational adoption of blockchain technology: extending the technology–organization–environment (TOE) framework in the Australian context,” Sustainability, vol. 13, no. 16, p. 9404, 2021, doi: 10.3390/su13169404.
S. Seshadrinathan and S. Chandra, “Exploring factors influencing adoption of blockchain in accounting applications using technology–organization–environment framework,” J. Int. Technol. Inf. Manag., vol. 30, no. 1, pp. 30–68, 2021, doi: 10.58729/1941-6679.1477.
H. Jebril, I. Altawaiha, and A. Metib, “Exploring Factors Influencing Teachers’ Intention to Adopt Gamified Learning Tools: A UTAUT2-Based Study,” Authorea Prepr., 2024, doi:10.22541/au.171386689.98738952/v1.
M. Sarstedt, C. M. Ringle, and J. F. Hair, “Partial least squares structural equation modeling,” in Handbook of market research, Springer, 2021, pp. 587–632. doi: 10.1007/978-3-319-57413-4_15.
C. Fornell and D. F. Larcker, “Evaluating structural equation models with unobservable variables and measurement error,” J. Mark. Res., vol. 18, no. 1, pp. 39–50, 1981, doi: 10.1177/002224378101800104.