Tree-based Filtering in Pulse-Line Intersection Method Outputs for An Outlier-tolerant Data Processing
DOI: http://dx.doi.org/10.30630/joiv.6.1.861
Abstract
Keywords
Full Text:
PDFReferences
H.-C. Chen, S.-S. Kuo, S.-C. Sun, and C.-H. Chang, “A Distinguishing Arterial Pulse Waves Approach by Using Image Processing and Feature Extraction Technique,†J Med Syst, vol. 40, no. 10, p. 215, Oct. 2016, doi: 10.1007/s10916-016-0568-4.
Z. Chen, A. Huang, and X. Qiang, “Research on Pulse Classification Based on Multiple Factors,†in Bio-inspired Computing: Theories and Applications, vol. 952, J. Qiao, X. Zhao, L. Pan, X. Zuo, X. Zhang, Q. Zhang, and S. Huang, Eds. Singapore: Springer Singapore, 2018, pp. 63–71. doi: 10.1007/978-981-13-2829-9_7.
A. de Sá Ferreira and A. J. Lopes, “Pulse waveform analysis as a bridge between pulse examination in Chinese medicine and cardiology,†Chin. J. Integr. Med., vol. 19, no. 4, pp. 307–314, Apr. 2013, doi: 10.1007/s11655-013-1412-z.
M. T. Politi et al., “The dicrotic notch analyzed by a numerical model,†Computers in Biology and Medicine, vol. 72, pp. 54–64, May 2016, doi: 10.1016/j.compbiomed.2016.03.005.
H. Chang, J. Chen, and Y. Liu, “Micro-piezoelectric pulse diagnoser and frequency domain analysis of human pulse signals,†Journal of Traditional Chinese Medical Sciences, vol. 5, no. 1, pp. 35–42, Jan. 2018, doi: 10.1016/j.jtcms.2018.02.002.
L. S. Xu, M. Q.-H. Meng, and K. Q. Wang, “Pulse image recognition using fuzzy neural network,†in 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, pp. 3148–3151.
B. Peng, C.-H. Luo, N. Sinha, C.-C. Tai, X. Xie, and H. Xie, “Fourier series analysis for novel spatiotemporal pulse waves: Normal, taut, and slippery pulse images,†Evidence-Based Complementary and Alternative Medicine, vol. 2019, 2019.
L. Qiao et al., “The Association of Radial Artery Pulse Wave Variables with the Pulse Wave Velocity and Echocardiographic Parameters in Hypertension,†Evidence-Based Complementary and Alternative Medicine, vol. 2018, pp. 1–11, Dec. 2018, doi: 10.1155/2018/5291759.
Y. Shi et al., “Study on the Syndrome Characteristics and Classification Model of Non-Small Cell Lung Cancer Based on Tongue and Pulse Data,†2021.
Y. Hao et al., “A noninvasive, economical, and instant-result method to diagnose and monitor type 2 diabetes using pulse wave: case-control study,†JMIR mHealth and uHealth, vol. 7, no. 4, p. e11959, 2019.
H.-C. Chen et al., “Pulse-line intersection method with unboxed artificial intelligence for hesitant pulse wave classification,†Information Processing & Management, vol. 59, no. 2, p. 102855, Mar. 2022, doi: 10.1016/j.ipm.2021.102855.
M. Zhang, X. Li, and L. Wang, “An Adaptive Outlier Detection and Processing Approach Towards Time Series Sensor Data,†IEEE Access, vol. 7, pp. 175192–175212, 2019, doi: 10.1109/ACCESS.2019.2957602.
F. Thabtah, S. Hammoud, F. Kamalov, and A. Gonsalves, “Data imbalance in classification: Experimental evaluation,†Information Sciences, vol. 513, pp. 429–441, 2020.
H.-C. Chen, E. Prasetyo, S. S. Kusumawardani, S.-S. Tseng, T.-L. Kung, and K.-Y. Wang, “Learning Performance Prediction with Imbalanced Virtual Learning Environment Students’ Interactions Data,†in International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, 2021, pp. 330–340.
D. Devi, S. K. Biswas, and B. Purkayastha, “Learning in presence of class imbalance and class overlapping by using one-class SVM and undersampling technique,†Connection Science, vol. 31, no. 2, pp. 105–142, 2019.
E. H. Budiarto, A. Erna Permanasari, and S. Fauziati, “Unsupervised Anomaly Detection Using K-Means, Local Outlier Factor and One Class SVM,†in 2019 5th International Conference on Science and Technology (ICST), Yogyakarta, Indonesia, Jul. 2019, pp. 1–5. doi: 10.1109/ICST47872.2019.9166366.
J. Cui, L. Tu, J. Zhang, S. Zhang, Z. Zhang, and J. Xu, “Analysis of Pulse Signals Based on Array Pulse Volume,†Chin. J. Integr. Med., vol. 25, no. 2, pp. 103–107, Feb. 2019, doi: 10.1007/s11655-018-2776-y.
K. Gokcesu, M. M. Neyshabouri, H. Gokcesu, and S. S. Kozat, “Sequential outlier detection based on incremental decision trees,†IEEE Transactions on Signal Processing, vol. 67, no. 4, pp. 993–1005, 2018.
D. Cortes, “Explainable outlier detection through decision tree conditioning,†arXiv preprint arXiv:2001.00636, 2020.
S. Y. Sheikh and M. T. Jilani, “A ubiquitous wheelchair fall detection system using low-cost embedded inertial sensors and unsupervised one-class SVM,†J Ambient Intell Human Comput, Apr. 2021, doi: 10.1007/s12652-021-03279-6.
Z. Wang, Y. Fu, C. Song, P. Zeng, and L. Qiao, “Power System Anomaly Detection Based on OCSVM Optimized by Improved Particle Swarm Optimization,†IEEE Access, vol. 7, pp. 181580–181588, 2019, doi: 10.1109/ACCESS.2019.2959699.
R. B. Zhang, L. H. Xia, and Y. Lu, “Anomaly Detection of ICS based on EB-OCSVM,†J. Phys.: Conf. Ser., vol. 1267, no. 1, p. 012054, Jul. 2019, doi: 10.1088/1742-6596/1267/1/012054.
M. Ahmed, R. Seraj, and S. M. S. Islam, “The k-means algorithm: A comprehensive survey and performance evaluation,†Electronics, vol. 9, no. 8, p. 1295, 2020.
K. P. Sinaga and M.-S. Yang, “Unsupervised K-means clustering algorithm,†IEEE access, vol. 8, pp. 80716–80727, 2020.
A. F. Jahwar and A. M. Abdulazeez, “Meta-heuristic algorithms for K-means clustering: A review,†PalArch’s Journal of Archaeology of Egypt/Egyptology, vol. 17, no. 7, pp. 12002–12020, 2020.
S.-H. Jung, H. Lee, and J.-H. Huh, “A novel model on reinforce K-means using location division model and outlier of initial value for lowering data cost,†Entropy, vol. 22, no. 8, p. 902, 2020.
C. Chen, Y. Wang, W. Hu, and Z. Zheng, “Robust multi-view k-means clustering with outlier removal,†Knowledge-Based Systems, vol. 210, p. 106518, 2020.
P. J. Jones et al., “FilterK: A new outlier detection method for k-means clustering of physical activity,†Journal of biomedical informatics, vol. 104, p. 103397, 2020.
S. Zhao, W. Li, and J. Cao, “A user-adaptive algorithm for activity recognition based on k-means clustering, local outlier factor, and multivariate gaussian distribution,†Sensors, vol. 18, no. 6, p. 1850, 2018.
B. Angelin and A. Geetha, “Outlier Detection using Clustering Techniques–K-means and K-median,†in 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), 2020, pp. 373–378.
S. Kanjanawattana, “A novel outlier detection applied to an adaptive k-means,†International Journal of Machine Learning and Computing, vol. 9, no. 5, pp. 569–574, 2019.
Prayitno et al., “A Systematic Review of Federated Learning in the Healthcare Area: From the Perspective of Data Properties and Applications,†Applied Sciences, vol. 11, no. 23, Art. no. 23, Jan. 2021, doi: 10.3390/app112311191.