Automated Detection and Counting of Hard Exudates for Diabetic Retinopathy by using Watershed and Double Top-Bottom Hat Filtering Algorithm
DOI: http://dx.doi.org/10.30630/joiv.5.3.664
Abstract
Keywords
Full Text:
PDFReferences
Felman, “Diabetic retinopathy: Causes, symptoms, and treatments,†2017. [Online]. Available: https://www.medicalnewstoday.com/articles/183417. [Accessed: 27-Jun-2021].
S. Qummar et al., “A Deep Learning Ensemble Approach for Diabetic Retinopathy Detection,†IEEE Access, vol. 7, pp. 150530–150539, 2019, doi: 10.1109/ACCESS.2019.2947484.
R. Maher, S. Kayte, S. Bhable, and J. Kayte, “Automated Detection of Microaneurysm, Hard Exudates, and Cotton Wool Spots in Retinal fundus Images,†IOSR J. Comput. Eng. Ver. I, vol. 17, no. 6, pp. 2278–661, 2015, doi: 10.9790/0661-1761152156.
S. R. Flaxman et al., “Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis,†Lancet Glob. Heal., vol. 5, no. 12, pp. e1221–e1234, 2017, doi: 10.1016/S2214-109X(17)30393-5.
World Health Organization, “Diabetes,†p. https://www.who.int/health-topics/diabetes.
B. M. Mafauzy, “Diabetes mellitus in Malaysia,†Medical Journal of Malaysia, vol. 61, no. 4, pp. 397–398, 2006.
“Malaysia has 3.6 million diabetics, says Dzulkefly,†The Star, 2019. [Online]. Available: https://www.thestar.com.my/news/nation/2019/03/27/malaysia-has-36-million-diabeticssays-dzulkefly. [Accessed: 27-Jun-2021].
International Diabetes Federation - Home, “Home,†Online. [Online]. Available: https://idf.org/our-network/regions-members/western-pacific/members/108-malaysia.html. [Accessed: 27-Jun-2021].
L. Guariguata, D. R. Whiting, I. Hambleton, J. Beagley, U. Linnenkamp, and J. E. Shaw, “Global estimates of diabetes prevalence for 2013 and projections for 2035,†Diabetes Res. Clin. Pract., vol. 103, no. 2, pp. 137–149, 2014, doi: 10.1016/j.diabres.2013.11.002.
X. Zeng, H. Chen, Y. Luo, and W. Ye, “Automated diabetic retinopathy detection based on binocular siamese-like convolutional neural network,†IEEE Access, vol. 7, pp. 30744–30753, 2019, doi: 10.1109/ACCESS.2019.2903171.
X. Guo and F. Yu, “A method of automatic cell counting based on microscopic image,†Proc. - 2013 5th Int. Conf. Intell. Human-Machine Syst. Cybern. IHMSC 2013, vol. 1, pp. 293–296, 2013, doi: 10.1109/IHMSC.2013.76.
F. S. Pranata, J. Na’am, and R. Hidayat, “Color feature segmentation image for identification of cotton wool spots on diabetic retinopathy fundus,†Int. J. Adv. Sci. Eng. Inf. Technol., vol. 10, no. 3, pp. 974–979, 2020, doi: 10.18517/ijaseit.10.3.11877.
V. Satyananda, K. V. Narayanaswamy, and Karibasappa, “Hard exudate extraction from fundus images using watershed transform,†Indones. J. Electr. Eng. Informatics, vol. 7, no. 3, pp. 449–462, 2019, doi: 10.11591/ijeei.v7i3.775.
K. Gayathri, D. Narmadha, K. Thilagavathi, K. Pavithra, and M. Pradeepa, “Detection of Dark Lesions from Coloured Retinal Image Using Curvelet Transform and Morphological Operation,†vol. 2, pp. 15–21, 2014.
S. Long, X. Huang, Z. Chen, S. Pardhan, D. Zheng, and F. Scalzo, “Automatic detection of hard exudates in color retinal images using dynamic threshold and SVM classification: Algorithm development and evaluation,†Biomed Res. Int., vol. 2019, 2019, doi: 10.1155/2019/3926930.
S. A. Ali Shah, A. Laude, I. Faye, and T. B. Tang, “Automated microaneurysm detection in diabetic retinopathy using curvelet transform,†J. Biomed. Opt., vol. 21, no. 10, p. 101404, 2016, doi: 10.1117/1.jbo.21.10.101404.
J. P. Bae, K. G. Kim, H. C. Kang, C. B. Jeong, K. H. Park, and J. M. Hwang, “A study on hemorrhage detection using hybrid method in fundus images,†J. Digit. Imaging, vol. 24, no. 3, pp. 394–404, 2011, doi: 10.1007/s10278-010-9274-9.
P. Wang, X. Hu, Y. Li, Q. Liu, and X. Zhu, “Automatic cell nuclei segmentation and classification of breast cancer histopathology images,†Signal Processing, vol. 122, pp. 1–13, 2016, doi: 10.1016/j.sigpro.2015.11.011.
A. Sopharak, B. Uyyanonvara, and S. Barman, “Automatic exudate detection from non-dilated diabetic retinopathy retinal images using Fuzzy C-means clustering,†Sensors, vol. 9, no. 3, pp. 2148–2161, 2009, doi: 10.3390/s90302148.
R. Harini and N. Sheela, “Feature extraction and classification of retinal images for automated detection of Diabetic Retinopathy,†Proc. - 2016 2nd Int. Conf. Cogn. Comput. Inf. Process. CCIP 2016, pp. 7–10, 2016, doi: 10.1109/CCIP.2016.7802862.
R. S. Biyani and B. M. Patre, “A clustering approach for exudates detection in screening of diabetic retinopathy,†2016 Int. Conf. Signal Inf. Process. IConSIP 2016, 2017, doi: 10.1109/ICONSIP.2016.7857495.
K. Wisaeng and W. Sa-ngiamvibool, “Automatic detection and recognition of optic disk with maker-controlled watershed segmentation and mathematical morphology in color retinal images,†Soft Comput., vol. 22, no. 19, pp. 6329–6339, 2018, doi: 10.1007/s00500-017-2681-9.
H. A. Khan and G. M. Maruf, “Counting clustered cells using distance mapping,†2013 Int. Conf. Informatics, Electron. Vision, ICIEV 2013, 2013, doi: 10.1109/ICIEV.2013.6572677.
W. Tangsuksant, C. Pintavirooj, S. Taertulakarn, and S. Daochai, “Development algorithm to count blood cells in urine sediment using ANN and Hough Transform,†BMEiCON 2013 - 6th Biomed. Eng. Int. Conf., no. June, 2013, doi: 10.1109/BMEiCon.2013.6687725.
A. M. Sirisha and P. Venkateswararao, “Image processing techniques on radiological images of human lungs effected by COVID-19,†Int. J. Informatics Vis., vol. 4, no. 2, pp. 69–72, 2020, doi: 10.30630/joiv.4.2.359.
R. Hidayat, F. N. Jaafar, I. M. Yassin, A. Zabidi, F. H. K. Zaman, and Z. I. Rizman, “Face detection using Min-Max features enhanced with Locally Linear Embedding,†TEM J., vol. 7, no. 3, pp. 678–685, 2018, doi: 10.18421/TEM73-27.
Y. Yunus, J. Harlan, J. Santony, R. Hidayat, and J. Na’am, “Enhancement on enlarge image for identification lumbar radiculopathy at magnetic resonance imaging,†TEM J., vol. 9, no. 2, pp. 649–655, 2020, doi: 10.18421/TEM92-30.