Combining Hybrid Approach Redefinition-Multiclass Imbalance (HAR-MI) and Hybrid Sampling in Handling Multi-Class Imbalance and Overlapping
DOI: http://dx.doi.org/10.30630/joiv.5.1.420
Abstract
Keywords
Full Text:
PDFReferences
G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and G. Bing, “Learning from Class-Imbalanced Data: Review of Methods and Applications,†Expert Systems With Applications, vol. 73, pp. 220–239, May 2017.
A. Guzmán-Ponce, J. S. Sánchez, R. M. Valdovinos, and J. R. Marcial-Romero, “DBIG-US: A two-stage under-sampling algorithm to face the class imbalance problem,†Expert Systems with Applications, p. 114301, Nov. 2020, doi: 10.1016/j.eswa.2020.114301.
B. Liu and G. Tsoumakas, “Dealing with class imbalance in classifier chains via random undersampling,†Knowledge-Based Systems, vol. 192, p. 105292, Mar. 2020, doi: 10.1016/j.knosys.2019.105292.
J. M. Johnson and T. M. Khoshgoftaar, “Survey on deep learning with class imbalance,†J Big Data, vol. 6, no. 1, p. 27, Mar. 2019, doi: 10.1186/s40537-019-0192-5.
P. Shamsolmoali, M. Zareapoor, L. Shen, A. H. Sadka, and J. Yang, “Imbalanced data learning by minority class augmentation using capsule adversarial networks,†Neurocomputing, Jul. 2020, doi: 10.1016/j.neucom.2020.01.119.
W. Hou, X. Wang, H. Zhang, J. Wang, and L. Li, “A novel dynamic ensemble selection classifier for an imbalanced data set: An application for credit risk assessment,†Knowledge-Based Systems, vol. 208, p. 106462, Nov. 2020, doi: 10.1016/j.knosys.2020.106462.
F. Rayhan, S. Ahmed, A. Mahbub, R. Jani, S. Shatabda, and D. M. Farid, “CUSBoost: Cluster-Based Under-Sampling with Boosting for Imbalanced Classification,†in 2017 2nd International Conference on Computational Systems and Information Technology for Sustainable Solution (CSITSS), Dec. 2017, pp. 1–5, doi: 10.1109/CSITSS.2017.8447534.
J. Zhao, J. Jin, S. Chen, R. Zhang, B. Yu, and Q. Liu, “A weighted hybrid ensemble method for classifying imbalanced data,†Knowledge-Based Systems, vol. 203, p. 106087, Sep. 2020, doi: 10.1016/j.knosys.2020.106087.
Z. Liu, D. Tang, Y. Cai, R. Wang, and F. Chen, “A hybrid method based on ensemble WELM for handling multi class imbalance in cancer microarray data,†Neurocomputing, vol. 266, pp. 641–650, Nov. 2017, doi: 10.1016/j.neucom.2017.05.066.
E. R. Q. Fernandes and A. C. P. L. F. de Carvalho, “Evolutionary inversion of class distribution in overlapping areas for multi-class imbalanced learning,†Information Sciences, vol. 494, pp. 141–154, Aug. 2019, doi: 10.1016/j.ins.2019.04.052.
Y. Zhu, Y. Yan, Y. Zhang, and Y. Zhang, “EHSO: Evolutionary Hybrid Sampling in overlapping scenarios for imbalanced learning,†Neurocomputing, vol. 417, pp. 333–346, Dec. 2020, doi: 10.1016/j.neucom.2020.08.060.
P. Zyblewski, R. Sabourin, and M. Woźniak, “Preprocessed dynamic classifier ensemble selection for highly imbalanced drifted data streams,†Information Fusion, vol. 66, pp. 138–154, Feb. 2021, doi: 10.1016/j.inffus.2020.09.004.
L. Yijing, G. Haixiang, L. Xiao, L. Yanan, and L. Jinling, “Adapted ensemble classification algorithm based on multiple classifier system and feature selection for classifying multi-class imbalanced data,†Knowledge-Based Systems, vol. 94, pp. 88–104, Feb. 2016, doi: 10.1016/j.knosys.2015.11.013.
H. Hartono, Y. Risyani, E. Ongko, and D. Abdullah, “HAR-MI method for multi-class imbalanced datasets,†TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 18, no. 2, Art. no. 2, Apr. 2020, doi: 10.12928/telkomnika.v18i2.14818.
G.-H. Fu, Y.-J. Wu, M.-J. Zong, and L.-Z. Yi, “Feature selection and classification by minimizing overlap degree for class-imbalanced data in metabolomics,†Chemometrics and Intelligent Laboratory Systems, vol. 196, p. 103906, Jan. 2020, doi: 10.1016/j.chemolab.2019.103906.
X. Gao et al., “An ensemble imbalanced classification method based on model dynamic selection driven by data partition hybrid sampling,†Expert Systems with Applications, vol. 160, p. 113660, Dec. 2020, doi: 10.1016/j.eswa.2020.113660.
J. Wei, H. Huang, L. Yao, Y. Hu, Q. Fan, and D. Huang, “New imbalanced bearing fault diagnosis method based on Sample-characteristic Oversampling TechniquE (SCOTE) and multi-class LS-SVM,†Applied Soft Computing, vol. 101, p. 107043, Mar. 2021, doi: 10.1016/j.asoc.2020.107043.
Z. Xu, D. Shen, T. Nie, and Y. Kou, “A hybrid sampling algorithm combining M-SMOTE and ENN based on Random forest for medical imbalanced data,†Journal of Biomedical Informatics, vol. 107, p. 103465, Jul. 2020, doi: 10.1016/j.jbi.2020.103465.
P. Vuttipittayamongkol and E. Elyan, “Neighbourhood-based undersampling approach for handling imbalanced and overlapped data,†Information Sciences, vol. 509, pp. 47–70, Jan. 2020, doi: 10.1016/j.ins.2019.08.062.
M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera, “A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches,†IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, no. 4, pp. 463–484, Jul. 2012, doi: 10.1109/TSMCC.2011.2161285.
S. Oh, “A new dataset evaluation method based on category overlap,†Comput. Biol. Med., vol. 41, no. 2, pp. 115–122, Feb. 2011, doi: 10.1016/j.compbiomed.2010.12.006.
A. Luque, A. Carrasco, A. MartÃn, and A. de las Heras, “The impact of class imbalance in classification performance metrics based on the binary confusion matrix,†Pattern Recognition, vol. 91, pp. 216–231, Jul. 2019, doi: 10.1016/j.patcog.2019.02.023.
J. Alcalá-Fdez et al., “KEEL: a software tool to assess evolutionary algorithms for data mining problems,†Soft Comput, vol. 13, no. 3, pp. 307–318, Feb. 2009, doi: 10.1007/s00500-008-0323-y.
F. Wilcoxon, “Individual Comparisons by Ranking Methods on JSTOR,†Biometrics Bulletin, vol. 1, no. 6, pp. 80–83, 1945