A Review on Classifying and Prioritizing User Review-Based Software Requirements

Amran Salleh - Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Mar Yah Said - Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Mohd Hafeez Osman - Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Sa’adah Hassan - Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia


Citation Format:



DOI: http://dx.doi.org/10.62527/joiv.8.3-2.3450

Abstract


User reviews are a valuable source of feedback for software developers, as they contain user requirements, opinions, and expectations regarding app usage, including dislikes, feature requests, and reporting bugs. However, extracting and analyzing user requirements from user reviews is ineffective due to the large volume, unstructured nature, and varying quality of the reviews. Therefore, further research is not just necessary but crucial to effectively explore methods to gather informative and meaningful user feedback. This study aims to investigate, analyze, and summarize the methods of requirement classification and prioritization techniques derived from user reviews. This review revealed that leveraging opinion mining, sentiment analysis, natural language processing, or any stacking technique can significantly enhance the extraction and classification processes. Additionally, an updated matrix taxonomy has been developed based on a combination of definitions from various studies to classify user reviews into four main categories: information seeking, feature request, problem discovery, and information giving. Furthermore, we identified Naive Bayes, SVM, and Neural Networks algorithms as dependable and suitable for requirement classification and prioritization tasks. The study also introduced a new 4-tuple pattern for efficient requirement prioritization, which included elicitation technique, requirement classification, additional factors, and higher range priority value. This study highlights the need for better tools to handle complex user reviews. Investigating the potential of emerging machine learning models and algorithms to improve classification and prioritization accuracy is crucial. Additionally, further research should explore automated classification to enhance efficiency.

Keywords


User reviews; requirements prioritization; requirements classification; mobile apps; user requirements

Full Text:

PDF

References


E. Erhieyovwe and E. E. Ogheneovo, “Software Maintenance and Evolution: The Implication for Software Development,” West African J. Ind. Acad. Res., vol. 7, no. 1, pp. 81–92, 2013.

V. Rajlich, “Software evolution and maintenance,” in Future of Software Engineering Proceedings, Dec. 2014, pp. 133–144. doi:10.1145/2593882.2593893.

M. P. S. S. Gôlo, A. F. Araújo, R. G. Rossi, and R. M. Marcacini, “Detecting relevant app reviews for software evolution and maintenance through multimodal one-class learning,” Inf. Softw. Technol., vol. 151, no. July, p. 106998, 2022, doi:10.1016/j.infsof.2022.106998.

R. Madani, A. Ez-Zahout, and F. Omary, “Extracting contextual insights from user reviews for recommender systems: a novel method,” Indones. J. Electr. Eng. Comput. Sci., vol. 35, no. 1, pp. 542–550, 2024, doi: 10.11591/ijeecs.v35.i1.pp542-550.

S. F. He, X. H. Pan, Y. M. Wang, D. G. Zamora, and L. Martínez, “A novel Multi-Criteria Decision Making framework based on Evidential Reasoning dealing with missing information from online reviews,” Inf. Fusion, 2024, doi: 10.1016/j.inffus.2024.102264.

W. Maalej and H. Nabil, “Bug report, feature request, or simply praise? On automatically classifying app reviews,” in 2015 IEEE 23rd International Requirements Engineering Conference, RE 2015 - Proceedings, 2015, pp. 116–125. doi: 10.1109/RE.2015.7320414.

S. Malgaonkar, S. A. Licorish, and B. T. R. Savarimuthu, “Prioritizing user concerns in app reviews – A study of requests for new features, enhancements and bug fixes,” Inf. Softw. Technol., 2022, doi:10.1016/j.infsof.2021.106798.

H. Wu, W. Deng, X. Niu, and C. Nie, “Identifying Key Features from App User Reviews,” in 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), Jul. 2021, pp. 922–932. doi: 10.1109/ICSE43902.2021.00088.

K. Selvasheela, A. M. Abirami, and A. K. Askarunisa, “Effective Customer Review Analysis Using Combined Capsule Networks with Matrix Factorization Filtering,” Computer Systems Science and Engineering. 2023. doi: 10.32604/csse.2023.029148.

T. Yang, C. Gao, J. Zang, D. Lo, and M. R. Lyu, “TOUR: Dynamic Topic and Sentiment Analysis of User Reviews for Assisting App Release,” Sep. 2021, pp. 708–712. doi: 10.1145/3442442.3458612.

M. Fereidouni, A. Mosharrof, U. Farooq, and A. B. Siddique, “Proactive Prioritization of App Issues via Contrastive Learning,” in Proceedings - 2022 IEEE International Conference on Big Data, Big Data 2022, 2022. doi: 10.1109/BigData55660.2022.10020586.

M. Cai, Y. Tan, B. Ge, Y. Dou, G. Huang, and Y. Du, “PURA: A Product-and-User Oriented Approach for Requirement Analysis From Online Reviews,” IEEE Syst. J., vol. 16, no. 1, pp. 566–577, 2022, doi:10.1109/JSYST.2021.3067334.

K. Zahoor and N. Z. Bawany, “Explainable artificial intelligence approach towards classifying educational android app reviews using deep learning,” Interact. Learn. Environ., 2023, doi:10.1080/10494820.2023.2212708.

N. Saraswathi, T. Sasi Rooba, and S. Chakaravarthi, “Improving the accuracy of sentiment analysis using a linguistic rule-based feature selection method in tourism reviews,” Meas. Sensors, 2023, doi:10.1016/j.measen.2023.100888.

R. R. Mekala, A. Irfan, E. C. Groen, A. Porter, and M. Lindvall, “Classifying User Requirements from Online Feedback in Small Dataset Environments using Deep Learning,” 2021, pp. 139–149. doi:10.1109/RE51729.2021.00020.

J. del Sagrado, J. A. Sierra Ibañez, and I. M. del Águila, “An estimation of distribution algorithm based on interactions between requirements to solve the bi-objective Next Release Problem,” J. Syst. Softw., 2023, doi: 10.1016/j.jss.2023.111632.

E. Afful-Dadzie, A. Afful-Dadzie, and S. B. Egala, “Social media in health communication: A literature review of information quality,” Health Information Management Journal. 2023. doi:10.1177/1833358321992683.

W. Maalej, V. Biryuk, J. Wei, and F. Panse, “On the Automated Processing of User Feedback,” arXiv Prepr. arXiv, pp. 1–28, 2024.

B. Kitchenham, L. Madeyski, and D. Budgen, “SEGRESS: Software Engineering Guidelines for REporting Secondary Studies,” Jun. 2023. doi: 10.1109/TSE.2022.3174092.

N. Genc-Nayebi and A. Abran, “A systematic literature review: Opinion mining studies from mobile app store user reviews,” J. Syst. Softw., 2017, doi: 10.1016/j.jss.2016.11.027.

A. A. Al-Subaihin, F. Sarro, S. Black, L. Capra, and M. Harman, “App Store Effects on Software Engineering Practices,” IEEE Trans. Softw. Eng., 2021, doi: 10.1109/TSE.2019.2891715.

H. Meth, M. Brhel, and A. Maedche, “The state of the art in automated requirements elicitation,” Inf. Softw. Technol., vol. 55, no. 10, pp. 1695–1709, Jul. 2013, doi: 10.1016/j.infsof.2013.03.008.

W. Dawei, R. Alfred, J. H. Obit, and C. K. On, “A Literature Review on Text Classification and Sentiment Analysis Approaches,” Lect. Notes Electr. Eng., vol. 724, pp. 305–323, 2021, doi: 10.1007/978-981-33-4069-5_26.

P. Loucopoulos, J. Sun, L. Zhao, and F. Heidari, “A systematic classification and analysis of NFRs,” in 19th Americas Conference on Information Systems, AMCIS 2013 - Hyperconnected World: Anything, Anywhere, Anytime, 2013, vol. 1, pp. 208–217.

W. Alhoshan, A. Ferrari, and L. Zhao, “Zero-shot learning for requirements classification: An exploratory study,” Inf. Softw. Technol., vol. 159, p. 107202, Oct. 2023, doi:10.1016/j.infsof.2023.107202.

F. A. Bukhsh, Z. A. Bukhsh, and M. Daneva, “A systematic literature review on requirement prioritization techniques and their empirical evaluation,” Comput. Stand. Interfaces, vol. 69, p. 103389, Feb. 2020, doi: 10.1016/j.csi.2019.103389.

F. Hujainah, R. B. A. Bakar, M. A. Abdulgabber, and K. Z. Zamli, “Software Requirements Prioritisation: A Systematic Literature Review on Significance, Stakeholders, Techniques and Challenges,” IEEE Access, 2018, doi: 10.1109/ACCESS.2018.2881755.

F. Shao, R. Peng, H. Lai, and B. Wang, “DRank: A semi-automated requirements prioritization method based on preferences and dependencies,” J. Syst. Softw., 2017, doi: 10.1016/j.jss.2016.09.043.

A. Bajaj and O. P. Sangwan, “A Systematic Literature Review of Test Case Prioritization Using Genetic Algorithms,” IEEE Access, vol. 7, pp. 126355–126375, 2019, doi: 10.1109/ACCESS.2019.2938260.

J. Dąbrowski, E. Letier, A. Perini, and A. Susi, “Analysing app reviews for software engineering: a systematic literature review,” Empir. Softw. Eng., vol. 27, no. 2, p. 43, Sep. 2022, doi: 10.1007/s10664-021-10065-7.

M. Srivani, A. Murugappan, T. Mala, S. M., A. Murugappan, and M. T., “Cognitive computing technological trends and future research directions in healthcare — A systematic literature review,” Artif. Intell. Med., vol. 138, p. 102513, 2023, doi: 10.1016/j.artmed.2023.102513.

S. Stradowski and L. Madeyski, “Machine learning in software defect prediction: A business-driven systematic mapping study,” Inf. Softw. Technol., vol. 155, p. 107128, 2023, doi:10.1016/j.infsof.2022.107128.

D. Cirqueira, M. Fontes Pinheiro, A. Jacob, F. Lobato, and A. Santana, “A Literature Review in Preprocessing for Sentiment Analysis for Brazilian Portuguese Social Media,” 2019, pp. 746–749. doi:10.1109/WI.2018.00008.

M. Garouani and J. Kharroubi, “MAC: An Open and Free Moroccan Arabic Corpus for Sentiment Analysis,” Lect. Notes Networks Syst., vol. 393, pp. 849–858, 2022, doi: 10.1007/978-3-030-94191-8_68.

A. F. De Araújo and R. M. Marcacini, “RE-BERT: automatic extraction of software requirements from app reviews using BERT language model,” in SAC ’21: The 36th ACM/SIGAPP Symposium on Applied Computing, Oct. 2021, pp. 1321–1327. doi:10.1145/3412841.3442006.

M. Tubishat, N. Idris, and M. Abushariah, “Explicit aspects extraction in sentiment analysis using optimal rules combination,” Futur. Gener. Comput. Syst., vol. 114, pp. 448–480, Jul. 2021, doi:10.1016/j.future.2020.08.019.

K. A. F. A. Samah, N. M. N. Azharludin, L. S. Riza, M. N. H. H. Jono, and N. A. Moketar, “Classification and visualization: Twitter sentiment analysis of Malaysia’s private hospitals,” IAES Int. J. Artif. Intell., vol. 12, no. 4, pp. 1793–1802, 2023, doi:10.11591/ijai.v12.i4.pp1793-1802.

W. M. S. Yafooz, A. Alsaeedi, and A.-H. M. Emara, “AraDS: Arabic Datasets for Text Mining Approaches,” 2023. doi:10.1109/ICSCA57840.2023.10087675.

H. Harkous, S. T. Peddinti, R. Khandelwal, A. Srivastava, and N. Taft, “Hark: A Deep Learning System for Navigating Privacy Feedback at Scale,” 2022, vol. 2022-May, pp. 2469–2486. doi:10.1109/SP46214.2022.9833729.

Y. Han, G. Nanda, and M. Moghaddam, “Attribute-Sentiment-Guided Summarization of User Opinions From Online Reviews,” J. Mech. Des., 2023, doi: 10.1115/1.4055736.

E. Al-Buraihy, R. U. Khan, W. Dan, and M. Ullah, “An ML-Based Classification Scheme for Analyzing the Social Network Reviews of Yemeni People,” Int. Arab J. Inf. Technol., vol. 19, no. 6, pp. 904–914, 2022, doi: 10.34028/iajit/19/6/8.

K. K. Gupta, S. Chennabasavraj, N. Garera, and A. Ekbal, “Product Review Translation: Parallel Corpus Creation and Robustness towards User-generated Noisy Text,” in ECNLP 2021 - 4th Workshop on e-Commerce and NLP, Proceedings, 2021. doi:10.18653/v1/2021.ecnlp-1.21.

N. A. K. M. Haris, S. Mutalib, A. M. A. Malik, S. Abdul-Rahman, and S. N. K. Kamarudin, “Sentiment classification from reviews for tourism analytics,” Int. J. Adv. Intell. Informatics, vol. 9, no. 1, pp. 108–120, 2023, doi: 10.26555/ijain.v9i1.1077.

P. R. Henao, J. Fischbach, D. Spies, J. Frattini, and A. Vogelsang, “Transfer Learning for Mining Feature Requests and Bug Reports from Tweets and App Store Reviews,” Jul. 2021, pp. 80–86. doi:10.1109/rew53955.2021.00019.

N. Al Kilani, R. Tailakh, A. Hanani, N. Al Kilani, R. Tailakh, and A. Hanani, “Automatic Classification of Apps Reviews for Requirement Engineering: Exploring the Customers Need from Healthcare Applications,” in 2019 Sixth International Conference on Social Networks Analysis, Management and Security (SNAMS), Jul. 2019, pp. 541–548. doi: 10.1109/snams.2019.8931820.

I. Alagha, “Leveraging Knowledge-Based Features With Multilevel Attention Mechanisms for Short Arabic Text Classification,” IEEE Access, vol. 10, pp. 51908–51921, Sep. 2022, doi:10.1109/ACCESS.2022.3175306.

A. Motwakel et al., “Convolutional Deep Belief Network Based Short Text Classification on Arabic Corpus,” Comput. Syst. Sci. Eng., vol. 45, no. 3, pp. 3097–3113, Aug. 2023, doi: 10.32604/csse.2023.033945.

X. Xu, B. Li, Y. Shen, B. Luo, C. Zhang, and F. Hao, “Short Text Classification Based on Hierarchical Heterogeneous Graph and LDA Fusion,” Electronics, vol. 12, no. 12, p. 2560, Sep. 2023, doi:10.3390/electronics12122560.

S. M. Khalifa, M. I. Marie, and M. M. El-Defrawi, “Aspects Detection Model for Users’ Reviews Using Machine Learning Techniques,” J. Theor. Appl. Inf. Technol., vol. 100, no. 19, pp. 5776–5786, 2022.

M. J. Hazar, M. Zrigui, and M. Maraoui, “Learner comments-based Recommendation system,” Procedia Comput. Sci., vol. 207, pp. 2000–2012, 2022, doi: 10.1016/j.procs.2022.09.259.

K. Ahkouk, M. Mustapha, M. Khadija, and M. Rachid, “A review of the text to SQL frameworks,” in ACM International Conference Proceeding Series, 2021. doi: 10.1145/3454127.3457619.

N. Elhassan et al., “Arabic Sentiment Analysis Based on Word Embeddings and Deep Learning,” Computers, vol. 12, no. 6, 2023, doi:10.3390/computers12060126.

A. M. Nerabie, M. AlKhatib, S. S. Mathew, M. El Barachi, and F. Oroumchian, “The impact of Arabic part of speech tagging on sentiment analysis: A new corpus and deep learning approach,” 2021, vol. 184, pp. 148–155. doi: 10.1016/j.procs.2021.03.026.

A. Elsaid, A. Mohammed, L. F. Ibrahim, and M. M. Sakre, “A Comprehensive Review of Arabic Text Summarization,” IEEE Access, vol. 10, pp. 38012–38030, 2022, doi:10.1109/access.2022.3163292.

G. Lo Bosco, G. Pilato, and D. Schicchi, “DeepEva: A deep neural network architecture for assessing sentence complexity in Italian and English languages,” Array, vol. 12, p. 100097, 2021, doi:10.1016/j.array.2021.100097.

M. Popović, A. Way, A. Poncelas, and M. Brkić Bakarić, “On Machine Translation of User Reviews,” in International Conference Recent Advances in Natural Language Processing, Nov. 2021, pp. 1109–1118. doi: 10.26615/978-954-452-072-4_124.

I. Afyouni, B. Kakah, and M. Bazazeh, “Arabic Geo-Social Event Detection using a Hybrid Learning Architecture,” 2023. doi:10.1109/SmartNets58706.2023.10216180.

M. Hadwan, M. Al-Sarem, F. Saeed, and M. A. Al-Hagery, “An Improved Sentiment Classification Approach for Measuring User Satisfaction toward Governmental Services’ Mobile Apps Using Machine Learning Methods with Feature Engineering and SMOTE Technique,” Appl. Sci., vol. 12, no. 11, 2022, doi:10.3390/app12115547.

A. A. Al Shamsi and S. Abdallah, “Text Mining Techniques for Sentiment Analysis of Arabic Dialects: Literature Review,” Adv. Sci. Technol. Eng. Syst. J., 2021, doi: 10.25046/aj0601112.

T. Mahmud, M. Ptaszynski, J. Eronen, and F. Masui, “Cyberbullying detection for low-resource languages and dialects: Review of the state of the art,” Inf. Process. Manag., 2023, doi:10.1016/j.ipm.2023.103454.

A. H. Hussein, I. F. Moawad, and R. M. Badry, “Arabic Sentiment Analysis for Multi-dialect Text using Machine Learning Techniques,” Int. J. Adv. Comput. Sci. Appl., 2021, doi:10.14569/ijacsa.2021.0121286.

M. Lu and P. Liang, “Automatic Classification of Non-Functional Requirements from Augmented App User Reviews,” ACM Int. Conf. Proceeding Ser., vol. Part F1286, pp. 344–353, Jul. 2017, doi:10.1145/3084226.3084241.

G. Alexander, M. Bahja, and G. F. Butt, “Automating Large-scale Health Care Service Feedback Analysis: Sentiment Analysis and Topic Modeling Study,” JMIR Med. Informatics, 2022, doi:10.2196/29385.

L. Xu, Z. Xue, and H. Huang, “Short text semantic feature extension and classification based on LDA,” IOP Conf. Ser. Mater. Sci. Eng., vol. 715, no. 1, p. 12110, Sep. 2020, doi: 10.1088/1757-899X/715/1/012110.

Y. Zhou, C. Li, G. Huang, Q. Guo, H. Li, and X. Wei, “A Short-Text Similarity Model Combining Semantic and Syntactic Information,” Electronics, vol. 12, no. 14, p. 3126, Aug. 2023, doi:10.3390/electronics12143126.

I. K. Raharjana, V. Aprillya, B. Zaman, A. Justitia, and S. S. M. Fauzi, “Enhancing software feature extraction results using sentiment analysis to aid requirements reuse,” Computers, 2021, doi:10.3390/computers10030036.

C. Yang, L. Wu, C. Yu, and Y. Zhou, “A Phrase-Level User Requests Mining Approach in Mobile Application Reviews: Concept, Framework, and Operation,” Information, vol. 12, no. 5, p. 177, Jul. 2021, doi: 10.3390/info12050177.

A. Pradhan, M. R. Senapati, and P. K. Sahu, “ABET: an affective emotion-topic method of biterms for emotion recognition from the short texts,” J. Ambient Intell. Humaniz. Comput., 2023, doi:10.1007/s12652-022-03799-9.

N. Jha and A. Mahmoud, “Using frame semantics for classifying and summarizing application store reviews,” Empir. Softw. Eng., 2018, doi: 10.1007/s10664-018-9605-x.

W. Pang, “Short Text Classification via Term Graph,” arXiv Prepr. arXiv2001.10338, Sep. 2020.

S. Kinariwala and S. Deshmukh, “Short text topic modelling using local and global word-context semantic correlation,” Multimed. Tools Appl., 2023, doi: 10.1007/s11042-023-14352-x.

N. Choudhary, C. C. Aggarwal, K. Subbian, and C. K. Reddy, “Self-supervised Short-text Modeling through Auxiliary Context Generation,” ACM Trans. Intell. Syst. Technol., 2022, doi: 10.1145/3511712.

Z. H. Amur, Y. Kwang Hooi, H. Bhanbhro, K. Dahri, and G. M. Soomro, “Short-Text Semantic Similarity (STSS): Techniques, Challenges and Future Perspectives,” Appl. Sci., vol. 13, no. 6, p. 3911, Sep. 2023, doi: 10.3390/app13063911.

A. Al-Hawari, H. Najadat, and R. Shatnawi, “Classification of application reviews into software maintenance tasks using data mining techniques,” Softw. Qual. J., vol. 29, no. 3, pp. 667–703, Jul. 2021, doi: 10.1007/s11219-020-09529-8.

M. Maziyah Mohamed, M. J. Yap, Q. W. Chee, and D. Jared, “Malay Lexicon Project 2: Morphology in Malay word recognition,” Mem. Cogn., 2023, doi: 10.3758/s13421-022-01337-8.

M. Itani, C. Roast, and S. Al-Khayatt, “Developing Resources for Sentiment Analysis of Informal Arabic Text in Social Media,” Procedia Comput. Sci., vol. 117, pp. 129–136, 2017, doi:10.1016/j.procs.2017.10.101.

R. Meneses, C. Brito, B. Lopes, and R. Correia, “Satisfaction and Dissatisfaction in Wine Tourism: A User-Generated Content Analysis,” Tour. Hosp. Res., 2023, doi: 10.1177/14673584231191989.

V. M. A. de Lima et al., “Temporal dynamics of requirements engineering from mobile app reviews,” PeerJ, vol. 8, 2022, doi:10.7717/peerj-cs.874.

S. Okuboyejo, “Examining Users’ Concerns while Using Mobile Learning Apps,” Int. J. Interact. Mob. Technol., 2021, doi:10.3991/ijim.v15i15.22345.

S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora, and H. C. Gall, “How can i improve my app? Classifying user reviews for software maintenance and evolution,” 2015, pp. 281–290. doi:10.1109/icsm.2015.7332474.

W. Hua, Z. Wang, H. Wang, K. Zheng, and X. Zhou, “Short text understanding through lexical-semantic analysis,” 2015 IEEE 31st Int. Conf. Data Eng., pp. 495–506, Aug. 2015, doi:10.1109/icde.2015.7113309.

K. Srisopha, P. Behnamghader, and B. Boehm, “Do consumers talk about the software in my product? An Exploratory Study of IoT Products on Amazon,” CLEI Eletronic J., vol. 22, no. 1, 2019, doi:10.19153/cleiej.22.1.1.

M. Binkhonain and L. Zhao, “A machine learning approach for hierarchical classification of software requirements,” Mach. Learn. with Appl., vol. 12, p. 100457, 2023, doi:10.1016/j.mlwa.2023.100457.

N. H. Borhan, H. Zulzalil, S. Hassan, and N. M. Ali, “A Hybrid Prioritization Approach by integrating non-Functional and Functional User Stories in Agile-Scrum Software Development (i-USPA):A preliminary study,” in 2022 IEEE International Conference on Computing, ICOCO 2022, 2022. doi:10.1109/icoco56118.2022.10031863.

R. Devadas and N. G. Cholli, “Multi aspects based requirements prioritization for large scale software using deep neural lagrange multiplier,” in 1st IEEE International Conference on Smart Technologies and Systems for Next Generation Computing, ICSTSN 2022, 2022, pp. 1–6. doi: 10.1109/icstsn53084.2022.9761298.

D. Garcia-Lopez, M. Segura-Morales, and E. Loza-Aguirre, “Improving the quality and quantity of functional and non-functional requirements obtained during requirements elicitation stage for the development of e-commerce mobile applications: an alternative reference process model,” IET Softw., vol. 14, no. 7th International Conference on Software Process Improvement (CIMPS) CL-CUCEI, Guadalajara, MEXICO, pp. 148–158, 2020, doi: 10.1049/iet-sen.2018.5443.

W. Maalej et al., “On the automatic classification of app reviews,” Requir. Eng., vol. 21, no. 3, pp. 311–331, Jul. 2016, doi:10.1007/s00766-016-0251-9.

M. A. H. Wadud, M. M. Kabir, M. F. Mridha, M. A. Ali, M. A. Hamid, and M. M. Monowar, “How can we manage Offensive Text in Social Media - A Text Classification Approach using LSTM-BOOST,” Int. J. Inf. Manag. Data Insights, vol. 2, no. 2, p. 100095, 2022, doi:10.1016/j.jjimei.2022.100095.

Y. Han and M. Moghaddam, “Analysis of sentiment expressions for user-centered design,” Expert Syst. Appl., 2021, doi:10.1016/j.eswa.2021.114604.

J. Wouters, A. Menkveld, S. Brinkkemper, and F. Dalpiaz, “Crowd-based requirements elicitation via pull feedback: method and case studies,” Requir. Eng., vol. 27, no. 4, pp. 429–455, 2022, doi:10.1007/s00766-022-00384-6.

M. R. Asadabadi, M. Saberi, N. S. Sadghiani, O. Zwikael, and E. Chang, “Enhancing the analysis of online product reviews to support product improvement: integrating text mining with quality function deployment,” J. Enterp. Inf. Manag., vol. 36, no. 1, pp. 275–302, 2023, doi: 10.1108/jeim-03-2021-0143.

K. J. Sai, S. S. Chakravarthi, S. Sountharrajan, and E. Suganya, “Ensemble Learning Solution for the Aspect-based Sentimental Analysis on IMDB reviews,” 2023. doi:10.1109/wispnet57748.2023.10134144.

A. Bello, S. C. Ng, and M. F. Leung, “A BERT Framework to Sentiment Analysis of Tweets,” Sensors, 2023, doi:10.3390/s23010506.

S. P. Sharma, L. Singh, and R. Tiwari, “Prediction of customer review’s helpfulness based on sentences encoding using CNN-BiGRU model,” J. Auton. Intell., vol. 6, no. 3, 2023, doi:10.32629/jai.v6i3.699.

P. Agathangelou and I. Katakis, “Balancing between holistic and cumulative sentiment classification,” Online Soc. Networks Media, vol. 29, 2022, doi: 10.1016/j.osnem.2022.100199.

A. Yucel, M. Caglar, H. Ahady Dolatsara, B. George, and A. Dag, “Predicting hotel reviews from sentiment: a multinomial classification framework,” J. Model. Manag., vol. 17, no. 2, pp. 697–714, 2022, doi:10.1108/JM2-09-2020-0255.

D. G. Mandhasiya, H. Murfi, A. Bustamam, and P. Anki, “Evaluation of Machine Learning Performance Based on BERT Data Representation with LSTM Model to Conduct Sentiment Analysis in Indonesian for Predicting Voices of Social Media Users in the 2024 Indonesia Presidential Election,” 2022, pp. 441–446. doi:10.1109/icoiact55506.2022.9972206.

M. A. Qureshi et al., “Sentiment Analysis of Reviews in Natural Language: Roman Urdu as a Case Study,” IEEE Access, vol. 10, pp. 24945–24954, 2022, doi: 10.1109/access.2022.3150172.

N. Alturayeif, H. Aljamaan, and J. Hassine, “An automated approach to aspect-based sentiment analysis of apps reviews using machine and deep learning,” Autom. Softw. Eng., vol. 30, no. 2, p. 30, Oct. 2023, doi: 10.1007/s10515-023-00397-7.

S. H. Lee, H. Lee, and J. H. Kim, “Enhancing the Prediction of User Satisfaction with Metaverse Service Through Machine Learning,” Comput. Mater. Contin., 2022, doi: 10.32604/cmc.2022.027943.

A. V. Asimit, I. Kyriakou, S. Santoni, S. Scognamiglio, and R. Zhu, “Robust Classification via Support Vector Machines,” Risks, 2022, doi: 10.3390/risks10080154.

D. B. M. Preethi, M. G. P. Kavyasri, and M. V. S. Akshaya, “Analysis on Automobile Reviews using Machine Learning Techniques,” Int. J. Res. Appl. Sci. Eng. Technol., 2023, doi: 10.22214/ijraset.2023.51918.

A. A. Qureshi, M. Ahmad, S. Ullah, M. N. Yasir, F. Rustam, and I. Ashraf, “Performance evaluation of machine learning models on large dataset of android applications reviews,” Multimed. Tools Appl., 2023, doi: 10.1007/s11042-023-14713-6.

S. Lyu and J. Liu, “Convolutional recurrent neural networks for text classification,” J. Database Manag., 2021, doi:10.4018/JDM.2021100105.

S. M. Mishal and M. M. Hamad, “Text Classification Using Convolutional Neural Networks,” Fusion Pract. Appl., 2022, doi:10.54216/FPA.070105.

H. J. Alantari, I. S. Currim, Y. Deng, and S. Singh, “An empirical comparison of machine learning methods for text-based sentiment analysis of online consumer reviews,” Int. J. Res. Mark., 2022, doi:10.1016/j.ijresmar.2021.10.011.

K. Bhatia and A. Sharma, “Sector classification for crowd-based software requirements,” 2021, pp. 1312–1320. doi:10.1145/3412841.3442005.

F. Hujainah, R. Binti Abu Bakar, A. B. Nasser, B. Al-haimi, and K. Z. Zamli, “SRPTackle: A semi-automated requirements prioritisation technique for scalable requirements of software system projects,” Inf. Softw. Technol., 2021, doi: 10.1016/j.infsof.2020.106501.

N. A. A. Aziz, S. Hassan, and N. Admodisastro, “Prioritizing based on crowd preferences to requirements elicited from crowd‟s sentiments,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 8 S, pp. 341–346, 2019.

M. Zhao, M. Liu, C. Xu, and C. Zhang, “Classifying travellers’ requirements from online reviews: an improved Kano model,” Int. J. Contemp. Hosp. Manag., 2024, doi: 10.1108/ijchm-06-2022-0726.

V. Gupta, “Comment on ‘A Social Network Based Process to Minimize In-Group Biasedness during Requirement Engineering,’” IEEE Access. 2021. doi: 10.1109/access.2021.3073379.

A. Martinis, D. Tzimos, V. C. Gerogiannis, and L. H. Son, “A Mutliple Stakeholders’ Software Requirements Prioritization Approach based on Intuitionistic Fuzzy Sets,” in CTISC 2022 - 2022 4th International Conference on Advances in Computer Technology, Information Science and Communications, 2022. doi:10.1109/ctisc54888.2022.9849773.

A. Gupta and C. Gupta, “A novel collaborative requirement prioritization approach to handle priority vagueness and inter-relationships,” J. King Saud Univ. - Comput. Inf. Sci., 2022, doi:10.1016/j.jksuci.2019.12.002.

M. Z. Naufal Maulana and D. Siahaan, “Use Case-Based Analytical Hierarchy Process Method for Software Requirements Prioritization,” in Proceeding - 6th International Conference on Information Technology, Information Systems and Electrical Engineering: Applying Data Sciences and Artificial Intelligence Technologies for Environmental Sustainability, ICITISEE 2022, 2022. doi:10.1109/icitisee57756.2022.10057944.