Big Data Environment for Realtime Earthquake Data Acquisition and Visualization
DOI: http://dx.doi.org/10.30630/joiv.3.4.320
Abstract
Keywords
Full Text:
PDFReferences
R. A. Umasugi, "Selama 2018, Gempa di Indonesia Meningkat 4.648 Kali Dibanding 2017," 29 December 2018. [Online]. Available: https://megapolitan.kompas.com/read/2018/12/29/10303711/selama-2018-gempa-di-indonesia-meningkat-4648-kali-dibanding-2017. [Accessed 15 July 2019].
W. Xiuying, Z. Ling and Z. Congcong, “On Application of Big Data Mining in Earthquake Precursor Observationâ€, Earthquake Research in China, Vol. 29, No. 4, pp. 452-458, 2015.
P. R. Patil and V. K. Kshirsagar, “Efficient time compression earthquake database using hadoop Hive ORC formatâ€, in International Conference on Intelligent Computing and Control Systems (ICICCS), 2017, pp. 1361-1364.
O. Omosebi, S. Sotiriadis, E. Asimakopoulou, N. Bessis, M. Trovati and R. Hill, “Designing a Subscription Service for Earthquake Big Data Analysis from Multiple Sourcesâ€, in International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2015, pp. 601-604.
E. Luksys, E. Asimakopoulou and N. Bessis, “Development of Tools for Data Analysis of Earthquakesâ€, in International Conference on Intelligent Networking and Collaborative Systems, 2014, pp. 406-410.
G. Gupta and I. Singh Gupta, “Earthquake Data Analysis and Visualization using Big Data Toolâ€, in International Conference on “Computing for Sustainable Global Developmentâ€, 2016, pp. 618-621.
G.Asencio–Cortés Morales–Esteban X.Shang and F.MartÃnez–Ãlvarez, “Earthquake prediction in California using regression algorithms and cloud-based big data infrastructureâ€, Computers and Geosciences, Vol. 115, pp. 198-210, 2017.
L.-H. Chen, H.-M. Hung, C.-Y. Chen, H.-K. Wu, Y. Takama and T. Yamaguchi, “3D Visualization of Earthquake Big Dataâ€, in Conference on Technologies and Applications of Artificial Intelligence (TAAI), 2017, pp. 72-75.
A. R. Barakbah, T. Harsono, A. Sudarsono, R. A. Aliefyan, “Big Data Analysis for Spatio-Temporal Earthquake Risk-Mapping System in Indonesia with Automatic Clusteringâ€, in The 2017 International Conference on Big Data Research, 2017, pp. 33-37.
M. Muller, Information Retrieval for Music and Motion, Bonn, Germany: Springer, 2007, Vol. XVI, pp. 69-74.
J.-S. R. Jang, Dynamic Time Warping, National Taiwan University Department of Computer Science Multimedia Information Retrieval, [Online]. Available: http://mirlab.org/jang/books/dcpr/dpDtw.asp?title=8-4%20Dynamic%20Time%20Warping, [Accessed 19 February 2019].
A. E. Suliswati, A. R. Barakbah, T. Harsono and Y. Setyowati, “Earthquake density measurement using Automatic Clusteringâ€, in Knowledge Creation and Intelligent Computing (KCIC), 2014, pp. 102-110.
A. R. Barakbah, T. Harsono, A. Sudarsono, Pemanfaatan Klasterisasi Otomatis untuk Analisis Gempa, Surabaya: Revka Prima Media, 2019.
R. Edelani, A. R. Barakbah, T. Harsono, A. Sudarsono, “Association analysis of earthquake distribution in Indonesia for spatial risk mappingâ€, in The International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC), 2017, pp. 231-238.
W. Randolph Franklin, “PNPOLY - Point Inclusion in Polygonâ€, Rensselaer Polytechnic Institute (RPI), [Online]. Available: https://wrf.ecse.rpi.edu//Research/Short_Notes/pnpoly.html, [Accessed 14 April 2019].
Apache, "Apache Superset (incubating)", Apache, [Online]. Available: https://superset.incubator.apache.org/. [Accessed 30 June 2019].