Implication of ICWFPSO as Optimization Neural Network Algorithm on Sales Forecasting System
DOI: http://dx.doi.org/10.62527/joiv.8.3-2.3134
Abstract
Predictive systems play a crucial role in a company's operations and strategy by aiding in more informed and data-driven decision-making and more effective planning and budgeting. It is possible to develop an intelligent system to perform forecasting. Neural networks offer significant advantages in forecasting systems due to their flexible modeling capabilities. However, this algorithm's fundamental weakness is the slow convergence rate and being trapped in a local minimum. To overcome it, this research is conducted to optimize the NN algorithm using the ICWFPSO to produce a forecasting algorithm with high accuracy and faster execution time using real e-commerce sales data for the past 7 years. Algorithm performance testing tests the Mean Absolute Error (MAE) value of the forecasting system using three scenarios: the NN forecasting algorithm, the NN optimized with ICWFPSO on the weight value, and the same scheme. Still, the optimized value is the hyperparameter value. ICWPSO has been shown to enhance the performance of PSO by tuning the inertia weight dynamically, which helps balance exploration and exploitation during the optimization process. The best prediction result is obtained when optimizing the hyperparameters using the ICWFPSO optimization technique compared to using traditional NN or optimizing weight value with ICWFPSO with the MAE value of 245.32958984375, and the best performance is obtained at iterations below 100. Further, gradient-based optimization methods might be generally preferred for their efficiency and effectiveness in handling large-scale neural network training.
Keywords
Full Text:
PDFReferences
F. Meng and X. Wen, “Can digital economy compensate the effect of aging on total factor productivity?,” PLOS ONE, vol. 19, no. 4, p. e0301500, Apr. 2024, doi: 10.1371/journal.pone.0301500.
S. Kim and T. Ha, “Influential Variables and Causal Relations Impact on Innovative Performance and Sustainable Growth of SMEs in Aspect of Industry 4.0 and Digital Transformation,” Sustainability, vol. 15, no. 9, p. 7310, Apr. 2023, doi: 10.3390/su15097310.
N. Farliana, I. Murniawaty, and H. Hardianto, “Sustainability of the Digital Economy in Indonesia: Opportunities, Challenges and Future Development,” Review of Business and Economics Studies, vol. 11, no. 4, pp. 21–28, Feb. 2024, doi: 10.26794/2308-944x-2023-11-4-21-28.
J. Duasa and A. E. Ramadan, “Digital Development and Economic Growth in Selected Asean Countries: Applying Response Surfaces for Critical Bounds Of Cointegration Test,” Journal of Southeast Asian Studies, vol. 24, no. 2, pp. 1–18, Dec. 2019, doi:10.22452/jati.vol24no2.1.
S. Wang and C. Ji, “Research on the Impact of Digital Inclusive Finance on High-Quality Economic Development,” Proceedings of the 2023 9th International Conference on Industrial and Business Engineering, pp. 125–132, Sep. 2023, doi: 10.1145/3629378.3629407.
H. Ha and C. K. P. Chuah, “Digital economy in Southeast Asia: challenges, opportunities and future development,” Southeast Asia: A Multidisciplinary Journal, vol. 23, no. 1, pp. 19–35, May 2023, doi:10.1108/seamj-02-2023-0023.
M. H. P. Swari, C. A. Putra, and I. P. S. Handika, “Analisis Perbandingan Algoritma Genetika dan Modified Improved Particle Swarm Optimization dalam Penjadwalan Mata Kuliah,” Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), vol. 11, no. 2, pp. 92–101, Aug. 2022, doi: 10.23887/janapati.v11i2.49061.
M. N. Afiat and S. Rijal, “Analysis of the Use of E-commerce in Improving Entrepreneurial Business Competitiveness,” Jurnal Minfo Polgan, vol. 12, no. 1, pp. 468–479, May 2023, doi:10.33395/jmp.v12i1.12439.
V. A. Pinto, A. M. P. Cardoso, M. M. K. Pinheiro, and F. S. Parreiras, “Iinterdisciplinarity in Data Science over Big Data: findings for mining industry,” Informação & Sociedade: Estudos, vol. 29, no. 4, pp. 61–74, Nov. 2019, doi: 10.22478/ufpb.1809-4783.2019v29n4.47536.
Eyitayo Raji, Tochukwu Ignatius Ijomah, and Osemeike Gloria Eyieyien, “Data-Driven decision making in agriculture and business: The role of advanced analytics,” Computer Science & IT Research Journal, vol. 5, no. 7, pp. 1565–1575, Jul. 2024, doi:10.51594/csitrj.v5i7.1275.
S. R. Y. Peesapati, “Enhancing Supply Chain Visibility in Large Enterprises: A Literature Review,” International Journal of Supply Chain Management, vol. 13, no. 3, pp. 20–27, Jun. 2024, doi:10.59160/ijscm.v13i3.6246.
A. I. Abueid, “Big Data and Cloud Computing Opportunities and Application Areas,” Engineering, Technology & Applied Science Research, vol. 14, no. 3, pp. 14509–14516, Jun. 2024, doi:10.48084/etasr.7339.
Henry Ejiga Adama and Chukwuekem David Okeke, “Digital transformation as a catalyst for business model innovation: A critical review of impact and implementation strategies,” Magna Scientia Advanced Research and Reviews, vol. 10, no. 2, pp. 256–264, Apr. 2024, doi: 10.30574/msarr.2024.10.2.0066.
Oseremi Onesi-Ozigagun, Yinka James Ololade, Nsisong Louis Eyo-Udo, and Damilola Oluwaseun Ogundipe, “Leading Digital Transformation in Non-Digital Sectors: A Strategic Review,” International Journal of Management & Entrepreneurship Research, vol. 6, no. 4, pp. 1157–1175, Apr. 2024, doi:10.51594/ijmer.v6i4.1005.
Oladapo Adeboye Popoola, Henry Ejiga Adama, Chukwuekem David Okeke, and Abiodun Emmanuel Akinoso, “The Strategic Value of Business Analysts in Enhancing Organizational Efficiency and Operations,” International Journal of Management & Entrepreneurship Research, vol. 6, no. 4, pp. 1288–1303, Apr. 2024, doi: 10.51594/ijmer.v6i4.1059.
A. Pataropura, R. Riki, and A. Saputra, “Sales Analysis Using the Forecasting Method,” bit-Tech, vol. 1, no. 3, pp. 144–147, Apr. 2021, doi: 10.32877/bt.v1i3.79.
B. Wang, S. Xu, X. Yu, and P. Li, “Time Series Forecasting Based on Cloud Process Neural Network,” International Journal of Computational Intelligence Systems, vol. 8, no. 5, p. 992, 2015, doi:10.1080/18756891.2015.1099905.
Y. Musa and S. Joshua, “Analysis of ARIMA-Artificial Neural Network Hybrid Model in Forecasting of Stock Market Returns,” Asian Journal of Probability and Statistics, pp. 42–53, Jan. 2020, doi:10.9734/ajpas/2020/v6i230157.
G. Aubakirova, V. Ivel, Y. Gerassimova, S. Moldakhmetov, and P. Petrov, “Application of artificial neural network for wheat yield forecasting,” Eastern-European Journal of Enterprise Technologies, vol. 3, no. 4 (117), pp. 31–39, Jun. 2022, doi: 10.15587/1729-4061.2022.259653.
T. Akkan, T. Mutlu, and E. Baş, “Forecasting sea surface temperature with feed-forward artificial networks in combating the global climate change: The sample of Rize, Türkiye,” Ege Journal of Fisheries and Aquatic Sciences, vol. 39, no. 4, pp. 311–315, Dec. 2022, doi:10.12714/egejfas.39.4.06.
N. Nikentari, H. Kurniawan, N. Ritha, and D. Kurniawan, “Optimasi Jaringan Syaraf Tiruan Backpropagation Dengan Particle Swarm Optimization Untuk Prediksi Pasang Surut Air Laut,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 5, no. 5, p. 605, Oct. 2018, doi:10.25126/jtiik.2018551055.
W. W. Wahyuni Windasari, Wasiman, and M. Annas Alfiyanto, “Perbandingan Akurasi Prediksi Metode Regresi Linear OLS Dengan Jaringan Syaraf Tiruan : Studi Kasus Dataset Startup,” Journal of Data Science Theory and Application, vol. 2, no. 1, pp. 17–22, Apr. 2023, doi: 10.32639/jasta.v2i1.283.
H. G. Nugraha and A. SN, “Optimasi Bobot Jaringan Syaraf Tiruan Mengunakan Particle Swarm Optimization,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 8, no. 1, p. 25, Jan. 2014, doi: 10.22146/ijccs.3492.
Y. V. R. N. Pawan and K. Bhanu, “Improved PSO Performance using LSTM based Inertia Weight Estimation,” International Journal of Advanced Computer Science and Applications, vol. 11, no. 11, 2020, doi: 10.14569/ijacsa.2020.0111172.
M. H. Prami Swari, Chrystia Aji Putra, I Putu Susila Handika, and Dwi Wahyuningtyas, “Improving the Performance of the General Course Scheduling System at UPN Veteran Jawa Timur through the Application of the IWCFPSO Algorithm,” Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), vol. 12, no. 3, pp. 416–425, Dec. 2023, doi: 10.23887/janapati.v12i3.68128.
C. Liu, W.-B. Du, and W.-X. Wang, “Particle Swarm Optimization with Scale-Free Interactions,” PLoS ONE, vol. 9, no. 5, p. e97822, May 2014, doi: 10.1371/journal.pone.0097822.
P. Yuvapoositanon and P. Intachai, “A Singular Spectrum Analysis-based Synthetic Dataset Generation Method for Remaining Useful Life Estimation of Turbo Fan Engines,” International Journal of Intelligent Engineering and Systems, vol. 14, no. 4, pp. 359–372, Aug. 2021, doi: 10.22266/ijies2021.0831.32.
P. Li, W. Chen, G. Guo, J. Tu, D. Zhang, and Q. Ma, “General principle and optimization of magneto‐acousto‐electrical tomography based on image distortion evaluation,” Medical Physics, vol. 50, no. 5, pp. 3076–3091, Mar. 2023, doi: 10.1002/mp.16317.
M. J. García‐Sarrió, M. L. Sanz, J. Sanz, A. González‐Coloma, and A. Cristina Soria, “A new method for microwave assisted ethanolic extraction of Mentha rotundifolia bioactive terpenoids,” Electrophoresis, vol. 39, no. 15, pp. 1957–1965, Apr. 2018, doi:10.1002/elps.201800115.
P. Wang, X. Jiang, J. Hu, and J. Zhao, “Chemically Engineering Magnetic Anisotropy of 2D Metalloporphyrin,” Advanced Science, vol. 4, no. 10, Jul. 2017, doi: 10.1002/advs.201700019.
Y.-W. Zhang et al., “Magnetic anisotropy in 5d transition metal–porphyrin molecules,” Chinese Physics B, vol. 30, no. 4, p. 047501, Apr. 2021, doi: 10.1088/1674-1056/abcf9c.