Atomic Structure Simulation and Properties’ Prediction using Machine Learning on Neodymium Oxide Nanoparticles Zinc Tellurite Glasses Aided by FTIR and TEM Analysis
DOI: http://dx.doi.org/10.62527/joiv.8.3.3097
Abstract
Keywords
Full Text:
PDFReferences
M. J. C. Mauro, "Topological constraint theory of glass," American Ceramic Society Bulletin, vol. 90, no. 4, pp. 31, 2011.
I. S. Mustafa, N. A. N. Razali, A. R. Ibrahim, N. Z. Yahaya, and H. M. Kamari, "From rice husk to transparent radiation protection material," Jurnal Intelek, vol. 9, no. 2, 2015.
P. Damas, J. Coelho, G. Hungerford, and N. S. Hussain, “Structural studies of lithium boro tellurite glasses doped with praseodymium and samarium oxides,” Materials Research Bulletin, vol. 47, no. 11, pp. 3489–3494, Nov. 2012, doi: 10.1016/j.materresbull.2012.06.071.
M. S. Gaafar, M. A. M. Abdeen, and S. Y. Marzouk, “Structural investigation and simulation of acoustic properties of some tellurite glasses using artificial intelligence technique,” Journal of Alloys and Compounds, vol. 509, no. 8, pp. 3566–3575, Feb. 2011, doi: 10.1016/j.jallcom.2010.12.064.
S. H. Alazoumi, H. A. A. Sidek, M. K. Halimah, K. A. Matori, M. H. M. Zaid, and A. A. Abdulbaset, "Synthesis and Elastic Properties of Ternary ZnO-PbO-TeO₂ Glasses," Chalcogenide Letters, vol. 14, no. 8, 2017.
C. Bootjomchai, “Comparative studies between theoretical and experimental of elastic properties and irradiation effects of soda lime glasses doped with neodymium oxide,” Radiation Physics and Chemistry, vol. 110, pp. 96–104, May 2015, doi:10.1016/j.radphyschem.2015.01.034.
W. Chinnamat, R. Laopaiboon, J. Laopaiboon, S. Pencharee, and C. Bootjomchai, “Influence of ionic radius modifying oxides on the elastic properties of glasses using ultrasonic techniques and FTIR spectroscopy,” Physics and Chemistry of Glasses: European Journal of Glass Science and Technology Part B, vol. 58, no. 5, pp. 207–216, Oct. 2017, doi: 10.13036/17533562.58.5.101.
D. Srolovitz, T. Egami, and V. Vitek, “Radial distribution function and structural relaxation in amorphous solids,” Physical Review B, vol. 24, no. 12, pp. 6936–6944, Dec. 1981, doi: 10.1103/physrevb.24.6936.
P. Siroha, D. Singh, R. Soni, and J. Gangwar, “Comparative study on crystallographic representation of transition metal oxides polymorphs nanomaterials using VESTA software: Case study on Fe2O3 and TiO2,” AIP Conference Proceedings, vol. 2006, p. 030038, 2018, doi:10.1063/1.5051294.
S. Abdullah, X. Zhou, R. Aguirre, and D. Zubia, “A computational approach to analyze grain structures of semiconductor compound films: Case study of CdTe/CdS multilayers,” MRS Advances, vol. 7, no. 22, pp. 457–461, Jan. 2022, doi: 10.1557/s43580-021-00194-y.
C. L. Farrow et al., “PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals,” Journal of Physics: Condensed Matter, vol. 19, no. 33, p. 335219, Jul. 2007, doi: 10.1088/0953-8984/19/33/335219.
D. R. G. Mitchell and T. C. Petersen, “RDFTools: A software tool for quantifying short‐range ordering in amorphous materials,” Microscopy Research and Technique, vol. 75, no. 2, pp. 153–163, Jul. 2011, doi: 10.1002/jemt.21038.
V. Dimitrov and T. Komatsu, "An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength," J. Univ. Chem. Technol. Metall., vol. 45, no. 3, pp. 219–250, 2010.
D. Linda et al., “Optical properties of tellurite glasses elaborated within the TeO2–Tl2O–Ag2O and TeO2–ZnO–Ag2O ternary systems,” Journal of Alloys and Compounds, vol. 561, pp. 151–160, Jun. 2013, doi: 10.1016/j.jallcom.2013.01.172.
S. J. L. Billinge, “Nanoscale structural order from the atomic pair distribution function (PDF): There’s plenty of room in the middle,” Journal of Solid State Chemistry, vol. 181, no. 7, pp. 1695–1700, Jul. 2008, doi: 10.1016/j.jssc.2008.06.046.
R. Sharma and A. Tenguria, "Some new techniques in the approximation of q-special function," 2019.
T. T. Larsen-Olsen et al., “Simultaneous multilayer formation of the polymer solar cell stack using roll-to-roll double slot-die coating from water,” Solar Energy Materials and Solar Cells, vol. 97, pp. 22–27, Feb. 2012, doi: 10.1016/j.solmat.2011.08.026.
R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo Method, 2nd ed. Hoboken, NJ, USA: John Wiley & Sons, 2016.
G. Fishman, Monte Carlo: Concepts, Algorithms, and Applications, New York, USA: Springer, 1996.
N. P. Kisbye, “The integral kernel in the kuznetsov type sum formula for SU(n + 1, 1),” Indagationes Mathematicae, vol. 12, no. 1, pp. 83–101, 2001, doi: 10.1016/s0019-3577(01)80007-0.
W. Wang, “Existence of closed characteristics on compact convex hypersurfaces in $$mathbf{R}^{2n}$$ R 2 n,” Calculus of Variations and Partial Differential Equations, vol. 55, no. 1, Jan. 2016, doi:10.1007/s00526-015-0945-8.
V. Springel, R. Pakmor, O. Zier, and M. Reinecke, “Simulating cosmic structure formation with the gadge-4 code,” Monthly Notices of the Royal Astronomical Society, vol. 506, no. 2, pp. 2871–2949, Jul. 2021, doi: 10.1093/mnras/stab1855.
T. R. Vetter and P. Schober, “Regression: The Apple Does Not Fall Far From the Tree,” Anesthesia & Analgesia, vol. 127, no. 1, pp. 277–283, Jul. 2018, doi: 10.1213/ane.0000000000003424.
M. Tranmer and M. Elliot, "Multiple linear regression," The Cathie Marsh Centre for Census and Survey Research (CCSR), vol. 5, no. 5, pp. 1–5, 2008.
L. J. Yang, M. J. Bibby, and R. S. Chandel, “Linear regression equations for modeling the submerged-arc welding process,” Journal of Materials Processing Technology, vol. 39, no. 1–2, pp. 33–42, Oct. 1993, doi: 10.1016/0924-0136(93)90006-r.
M. Z. Naser, “An engineer’s guide to eXplainable Artificial Intelligence and Interpretable Machine Learning: Navigating causality, forced goodness, and the false perception of inference,” Automation in Construction, vol. 129, p. 103821, Sep. 2021, doi:10.1016/j.autcon.2021.103821.
J. Wu and H. Yang, “Linear Regression-Based Efficient SVM Learning for Large-Scale Classification,” IEEE Transactions on Neural Networks and Learning Systems, vol. 26, no. 10, pp. 2357–2369, Oct. 2015, doi: 10.1109/tnnls.2014.2382123.
A. S. Barnard, “Challenges in modelling nanoparticles for drug delivery,” Journal of Physics: Condensed Matter, vol. 28, no. 2, p. 023002, Dec. 2015, doi: 10.1088/0953-8984/28/2/023002.
Y. Zhang and A. Haghani, “A gradient boosting method to improve travel time prediction,” Transportation Research Part C: Emerging Technologies, vol. 58, pp. 308–324, Sep. 2015, doi:10.1016/j.trc.2015.02.019.
A. Natekin and A. Knoll, “Gradient boosting machines, a tutorial,” Frontiers in Neurorobotics, vol. 7, 2013, doi:10.3389/fnbot.2013.00021.
A. J. Ferreira and M. A. T. Figueiredo, “Boosting Algorithms: A Review of Methods, Theory, and Applications,” Ensemble Machine Learning, pp. 35–85, 2012, doi: 10.1007/978-1-4419-9326-7_2.
L. Guelman, “Gradient boosting trees for auto insurance loss cost modeling and prediction,” Expert Systems with Applications, vol. 39, no. 3, pp. 3659–3667, Feb. 2012, doi: 10.1016/j.eswa.2011.09.058.
R. Moradi, R. Berangi, and B. Minaei, “A survey of regularization strategies for deep models,” Artificial Intelligence Review, vol. 53, no. 6, pp. 3947–3986, Dec. 2019, doi: 10.1007/s10462-019-09784-7.
P. Nie, M. Roccotelli, M. P. Fanti, Z. Ming, and Z. Li, “Prediction of home energy consumption based on gradient boosting regression tree,” Energy Reports, vol. 7, pp. 1246–1255, Nov. 2021, doi:10.1016/j.egyr.2021.02.006.
D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Computer Science, vol. 7, p. e623, Jul. 2021, doi: 10.7717/peerj-cs.623.
A. Morteza, M. Sadipour, R. S. Fard, S. Taheri, and A. Ahmadi, “A dagging‐based deep learning framework for transmission line flexibility assessment,” IET Renewable Power Generation, vol. 17, no. 5, pp. 1092–1105, Dec. 2022, doi: 10.1049/rpg2.12663.
S. N. Chakrabartty, "Improving linearity in health science investigations," Health Science Journal, vol. 17, no. 4, pp. 1–6, 2023.
J. Cheng, J. Sun, K. Yao, M. Xu, and Y. Cao, “A variable selection method based on mutual information and variance inflation factor,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 268, p. 120652, Mar. 2022, doi:10.1016/j.saa.2021.120652.
R. Salmerón Gómez, A. Rodríguez Sánchez, C. G. García, and J. García Pérez, “The VIF and MSE in Raise Regression,” Mathematics, vol. 8, no. 4, p. 605, Apr. 2020, doi: 10.3390/math8040605.
Q. Li et al., “Er 3+ /Yb 3+ co-doped bioactive glasses with up-conversion luminescence prepared by containerless processing,” Ceramics International, vol. 42, no. 11, pp. 13168–13175, Aug. 2016, doi: 10.1016/j.ceramint.2016.05.108.
A. A. A. Awshah et al., “Effect of Neodymium Nanoparticles on Elastic Properties of Zinc-Tellurite Glass System,” Advances in Materials Science and Engineering, vol. 2017, pp. 1–7, 2017, doi:10.1155/2017/6790635.
A. S. Masadeh, “Total scattering atomic pair distribution function: new methodology for nanostructure determination,” Journal of Experimental Nanoscience, vol. 11, no. 12, pp. 951–974, May 2016, doi: 10.1080/17458080.2016.1184769.
A. Stukowski, “Visualization and Analysis Strategies for Atomistic Simulations,” Multiscale Materials Modeling for Nanomechanics, pp. 317–336, 2016, doi: 10.1007/978-3-319-33480-6_10.
M. Fábián et al., “Network structure and thermal properties of bioactive (SiO2–CaO–Na2O–P2O5) glasses,” Journal of Materials Science, vol. 55, no. 6, pp. 2303–2320, Nov. 2019, doi:10.1007/s10853-019-04206-z.
K. Németh et al., “Efficient simultaneous reverse Monte Carlo modeling of pair-distribution functions and extended x-ray-absorption fine structure spectra of crystalline disordered materials,” The Journal of Chemical Physics, vol. 136, no. 7, Feb. 2012, doi:10.1063/1.3684547.
S. B. Adamu et al., “Structural, prediction and simulation of elastic properties for tellurite based glass systems doped with nano and micro Eu2O3 particles via artificial neural network model,” Journal of Materials Research and Technology, vol. 17, pp. 586–600, Mar. 2022, doi: 10.1016/j.jmrt.2022.01.035.
G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang, "Physics-informed machine learning," Nature Reviews Physics, vol. 3, no. 6, pp. 422–440, 2021.
J. Singh and S. Singh, “A review on Machine learning aspect in physics and mechanics of glasses,” Materials Science and Engineering: B, vol. 284, p. 115858, Oct. 2022, doi:10.1016/j.mseb.2022.115858.
V. Tatachar, "Comparative assessment of regression models based on model evaluation metrics," International Journal of Innovative Technology and Exploring Engineering, vol. 8, no. 9, pp. 853–860, 2021.
E. A. Mohammed, M. A. Naaj, M. Nachouki, and R. Mehdi, “Predicting Student Grade Point Average: Comparison of Machine Learning Regression Algorithms,” 2023 24th International Arab Conference on Information Technology (ACIT), vol. 18, pp. 1–6, Dec. 2023, doi: 10.1109/acit58888.2023.10453712.
M. K. Uçar, M. Nour, H. Sindi, and K. Polat, “The Effect of Training and Testing Process on Machine Learning in Biomedical Datasets,” Mathematical Problems in Engineering, vol. 2020, pp. 1–17, May 2020, doi: 10.1155/2020/2836236.
B. Venkatesh and J. Anuradha, “A Review of Feature Selection and Its Methods,” Cybernetics and Information Technologies, vol. 19, no. 1, pp. 3–26, Mar. 2019, doi: 10.2478/cait-2019-0001.
J. Y.-L. Chan et al., “Mitigating the Multicollinearity Problem and Its Machine Learning Approach: A Review,” Mathematics, vol. 10, no. 8, p. 1283, Apr. 2022, doi: 10.3390/math10081283.
G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to statistical learning, vol. 112, p. 18, New York: Springer, 2013.
N. M. Nor et al., “Physical, structural and optical characterization of silica-borotellurite glasses containing vanadium and nickel ions,” Physica B: Condensed Matter, vol. 627, p. 413553, Feb. 2022, doi:10.1016/j.physb.2021.413553.
J. S. Alzahrani, I. H. Midala, H. M. Kamari, N. M. Al-Hada, C. K. Tim, N. N. S. Nidzam, and M. S. Al-Buriahi, "Effect of calcination temperature on the structural and optical properties of (ZnO)₀.₈ (ZrO₂)₀.₂ nanoparticles," Journal of Inorganic and Organometallic Polymers and Materials, vol. 32, no. 5, pp. 1755–1765, 2022.
S. N. Nazrin et al., “Thermal and radiation shielding characteristics of erbium ions doped zinc tellurite glasses,” Progress in Nuclear Energy, vol. 168, p. 104995, Mar. 2024, doi: 10.1016/j.pnucene.2023.104995.
N. Almousa et al., “Tailoring perovskite ceramics for improved structure, vibrational behaviors and radiation protection: The role of lanthanum in PbTiO3,” Optical Materials, vol. 152, p. 115543, Jun. 2024, doi: 10.1016/j.optmat.2024.115543.
M. N. Azlan, M. K. Halimah, S. O. Baki, and W. M. Daud, “Effect of Neodymium Concentration on Structural and Optical Properties of Tellurite Based Glass System,” Materials Science Forum, vol. 846, pp. 183–188, Mar. 2016, doi: 10.4028/www.scientific.net/msf.846.183.
S. S. Hajer, M. K. Halimah, Z. Azmi, and M. N. Azlan, "Optical properties of zinc-borotellurite doped samarium," Chalcogenide Letters, vol. 11, no. 11, pp. 1-8, 2014.
M. F. Faznny, M. K. Halimah, and M. N. Azlan, "Effect of lanthanum oxide on optical properties of zinc borotellurite glass system," Journal of Optoelectronics and Biomedical Materials, vol. 8, no. 2, pp. 49–59, 2016.
H. M. Oo, H. Mohamed-Kamari, and W. M. D. Wan-Yusoff, “Optical Properties of Bismuth Tellurite Based Glass,” International Journal of Molecular Sciences, vol. 13, no. 4, pp. 4623–4631, Apr. 2012, doi:10.3390/ijms13044623.
M. N. Azlan, M. K. Halimah, S. Z. Shafinas, and W. M. Daud, "Polarizability and optical basicity of Er³⁺ ions doped tellurite based glasses," Chalcogenide Letters, vol. 11, no. 7, pp. 319, 2014.
M. K. Halimah and C. Eevon, “Comprehensive study on the effect of Gd2O3 NPs on elastic properties of zinc borotellurite glass system using non-destructive ultrasonic technique,” Journal of Non-Crystalline Solids, vol. 511, pp. 10–18, May 2019, doi:10.1016/j.jnoncrysol.2019.01.033.
M. K. Halimah, A. A. Awshah, A. M. Hamza, K. T. Chan, S. A. Umar, and S. H. Alazoumi, “Effect of neodymium nanoparticles on optical properties of zinc tellurite glass system,” Journal of Materials Science: Materials in Electronics, vol. 31, no. 5, pp. 3785–3794, Jan. 2020, doi: 10.1007/s10854-020-02907-9.