Segmentation of Plain CT Image of Ischemic Lesion based on Trans-Swin-UNet
DOI: http://dx.doi.org/10.62527/joiv.8.3-2.3028
Abstract
Keywords
Full Text:
PDFReferences
V. L. Feigin et al., “Pragmatic solutions to reduce the global burden of stroke: a World Stroke Organization–Lancet Neurology Commission,” Dec. 01, 2023, Elsevier Ltd. 10.1016/S1474-4422(23)00277-6.
M. Zhou et al., “Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017,” The Lancet, vol. 394, no. 10204, pp. 1145–1158, Sep. 2019, 10.1016/S0140-6736(19)30427-1.
J. Vymazal, A. M. Rulseh, J. Keller, and L. Janouskova, “Comparison of CT and MR imaging in ischemic stroke,” Dec. 01, 2012, Springer Verlag. 10.1007/s13244-012-0185-9.
H. Abbasi, M. Orouskhani, S. Asgari, and S. S. Zadeh, “Automatic brain ischemic stroke segmentation with deep learning: A review,” Neuroscience Informatics, vol. 3, no. 4, p. 100145, Dec. 2023, 10.1016/j.neuri.2023.100145.
M. Soltanpour, R. Greiner, P. Boulanger, and B. Buck, “Improvement of automatic ischemic stroke lesion segmentation in CT perfusion maps using a learned deep neural network,” Comput Biol Med, vol. 137, Oct. 2021, 10.1016/j.compbiomed. 2021.104849.
O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer Verlag, 2015, pp. 234–241. 10.1007/978-3-319-24574-4_28.
M. Malik, B. Chong, J. Fernandez, V. Shim, N. K. Kasabov, and A. Wang, “Stroke Lesion Segmentation and Deep Learning: A Comprehensive Review,” Bioengineering, vol. 11, no. 1, Jan. 2024, 10.3390/bioengineering11010086.
M. Drozdzal, E. Vorontsov, G. Chartrand, S. Kadoury, and C. Pal, “The Importance of Skip Connections in Biomedical Image Segmentation,” Aug. 2016, [Online]. Available: http://arxiv.org/abs/1608.04117
A. Annotation¨ozgün, C. ¸ Içek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation¨Ozgün,” 2016. [Online]. Available: http://lmb.informatik.uni-freiburg.de/resources/opensource/unet.en.html
F. Milletari, N. Navab, and S.-A. Ahmadi, “V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation,” in 2016 Fourth International Conference on 3D Vision (3DV), IEEE, Oct. 2016, pp. 565–571. 10.1109/ 3DV.2016.79.
Z. Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, and J. Liang, “UNet++: A Nested U-Net Architecture for Medical Image Segmentation,” 2018, pp. 3–11. 10.1007/978-3-030-00889-5_1.
A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,” Oct. 2020, [Online]. Available: http://arxiv.org/abs/2010.11929
O. Petit, N. Thome, C. Rambour, and L. Soler, “U-Net Transformer: Self and Cross Attention for Medical Image Segmentation,” in Lecture Notes in Computer Science, vol. 12966, 2021. 10.1007/978-3-030-87589-3_28.
A. Hatamizadeh et al., “UNETR: Transformers for 3D Medical Image Segmentation,” in 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Mar. 2022, pp. 1748–1758. 10.1109/WACV51458.2022.00181.
H. Cao et al., “Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation,” in Lecture Notes in Computer Science, vol. 13803, 2021, pp. 205–218. 10.1007/978-3-031-25066-8_9.
J. M. J. Valanarasu, P. Oza, I. Hacihaliloglu, and V. M. Patel, “Medical Transformer: Gated Axial-Attention for Medical Image Segmentation,” in Lecture Notes in Computer Science, vol. 12901, 2021. 0.1007/978-3-030-87193-2_4.
W. Wang, C. Chen, M. Ding, J. Li, H. Yu, and S. Zha, “TransBTS: Multimodal Brain Tumor Segmentation Using Transformer,” Mar. 2021, 10.1007/978-3-030-87193-2_11.
Y. Xie, J. Zhang, C. Shen, and Y. Xia, “CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation,” in Lecture Notes in Computer Science, vol. 12903, 2021, pp. 171–180. 10.1007/978-3-030-87199-4_16.
Z. Xu and C. Ding, “Combining convolutional attention mechanism and residual deformable Transformer for infarct segmentation from CT scans of acute ischemic stroke patients,” Front Neurol, vol. 14, 2023, 10.3389/fneur.2023.1178637.
Z. Li et al., “TFCNs: A CNN-Transformer Hybrid Network for Medical Image Segmentation,” in Artificial Neural Networks and Machine Learning – ICANN 2022, 2022, pp. 781–792. 10.1007/978-3-031-15937-4_65.
J. Chen et al., “TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation,” 2021. [Online]. Available: https://github.com/Beckschen/
O. Oktay et al., “Attention U-Net: Learning Where to Look for the Pancreas,” Apr. 2018, [Online]. Available: http://arxiv.org/abs/1804.03999
Z. Zhang, H. Tian, Z. Xu, Y. Bian, and J. Wu, “Application of a pyramid pooling Unet model with integrated attention mechanism and Inception module in pancreatic tumor segmentation,” J Appl Clin Med Phys, vol. 24, no. 12, Dec. 2023, 10.1002/acm2.14204.
M. Yeung, E. Sala, C. B. Schönlieb, and L. Rundo, “Unified Focal loss: Generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation,” Computerized Medical Imaging and Graphics, vol. 95, Jan. 2022, 10.1016/j.compmedimag.2021.102026.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Dec. 2015, pp. 770–778. 10.1109/CVPR.2016.90.
K. L. Lew, C. Y. Kew, K. S. Sim, and S. C. Tan, “Adaptive Gaussian Wiener Filter for CT-Scan Images with Gaussian Noise Variance,” Journal of Informatics and Web Engineering, vol. 3, no. 1, pp. 169–181, Feb. 2024, 10.33093/jiwe.2024.3.1.11.
W. T. Chan, “Conditional Noise Filter for MRI Images with Revised Theory on Second-order Histograms,” International Journal on Robotics, Automation and Sciences, vol. 3, pp. 25–32, Nov. 2021, 10.33093/ijoras.2021.3.5.
H. Çiğ, M. T. Güllüoğlu, M. B. Er, U. Kuran, and E. C. Kuran, “Enhanced Disease Detection Using Contrast Limited Adaptive Histogram Equalization and Multi-Objective Cuckoo Search in Deep Learning,” Traitement du Signal, vol. 40, no. 3, pp. 915–925, Jun. 2023, 10.18280/ts.400308.
J. Muschelli, “Recommendations for Processing Head CT Data,” Front Neuroinform, vol. 13, Sep. 2019, 10.3389/fninf.2019.00061.
D. Müller, I. Soto-Rey, and F. Kramer, “Towards a guideline for evaluation metrics in medical image segmentation,” Dec. 01, 2022, BioMed Central Ltd. 10.1186/s13104-022-06096-y.
C. C. Chai, W. H. Khoh, Y. H. Pang, and H. Y. Yap, “A Lung Cancer Detection with Pre-Trained CNN Models,” Journal of Informatics and Web Engineering, vol. 3, no. 1, pp. 41–54, Feb. 2024, doi: 10.33093/jiwe.2024.3.1.3.