Rainfall-Runoff Modeling Using Artificial Neural Network for Batu Pahat River Basin
DOI: http://dx.doi.org/10.62527/joiv.8.2.2704
Abstract
Keywords
Full Text:
PDFReferences
L. C. P. Velasco, R. P. Serquiña, M. S. A. Abdul Zamad, B. F. Juanico, and J. C. Lomocso, “Week-ahead rainfall forecasting using multilayer perceptron neural network,” Procedia Computer Science, vol. 161, pp. 386–397, 2019.
Y. Tikhamarine, D. Souag-Gamane, A. N. Ahmed, S. S. Sammen, O. Kisi, Y. F. Huang, and A. El-Shafie, “Rainfall-runoff modelling using improved machine learning methods: Harris hawks optimizer vs. particle swarm optimization,” Journal of Hydrology, vol. 589, no. June, p. 125133, 2020.
E. H. Lee, “Runoff prediction of urban stream based on the discharge of pump stations using improved multi-layer perceptron applying new optimizers combined with a harmony search,” Journal of Hydrology, vol. 615, no. PB, p. 128708, 2022.
L. M. F. Enung, Kasyanto H., Sari R.R., “Application of multilayer perceptron (MLP) method for streamflow forecasting (case study: Upper Citarum River, Indonesia),” 2023.
A. Wunsch, T. Liesch, and S. Broda, “Forecasting groundwater levels using nonlinear autoregressive networks with exogenous input (NARX),” Journal of Hydrology, vol. 567, pp. 743–758, 2018.
Y. Shao, J. Zhao, J. Xu, A. Fu, and M. Li, “Application of Rainfall-Runoff Simulation Based on the NARX Dynamic Neural Network Model,” Water (Switzerland), vol. 14, no. 13, pp. 1–16, 2022.
F.-J. C. Li-Chiu Chang, Jia-Yi Liou, “Spatial-temporal flood inundation nowcasts by fusing machine learning methods and principal component analysis,” Journal of Hydrology, vol. 612, no. Part A, 2022.
O. B. Bagheri M., Ibrahim Z.Z., Wolf I.D., Akhir M.F., Talaat W.I.A.W., “Sea-level projections using a NARX-NN model of tide gauge data for the coastal city of Kuala Terengganu in Malaysia,” Environmental Science and Pollution Research, vol. 30, no. 34, pp. 81839–81857, 2023.
M. Kottek, J. Grieser, C. Beck, B. Rudolf, and F. Rubel, “World map of the Köppen-Geiger climate classification updated,” Meteorologische Zeitschrift, vol. 15, no. 3, pp. 259–263, 2006.
V. Desai and H. A. Dinesha, “A Hybrid Approach to Data Pre-processing Methods,” 2020 IEEE International Conference for Innovation in Technology, INOCON 2020, pp. 6–9, 2020.
K. K. Al-jabery, T. Obafemi-Ajayi, G. R. Olbricht, and D. C. Wunsch II, “Data preprocessing,” Computational Learning Approaches to Data Analytics in Biomedical Applications, pp. 7–27, 2020.
H. Kang, “The prevention and handling of the missing data,” Korean Journal of Anesthesiology, vol. 64, no. 5, pp. 402–406, 2013.
M. Lepot, J. B. Aubin, and F. H. L. R. Clemens, “Interpolation in time series: An introductive overview of existing methods, their performance criteria and uncertainty assessment,” Water (Switzerland), vol. 9, no. 10, 2017.
R. K. Pearson, Y. Neuvo, J. Astola, and M. Gabbouj, “Generalized Hampel Filters,” Eurasip Journal on Advances in Signal Processing, vol. 2016, no. 1, 2016.
S.-K. S. Fan, C.-Y. Hsu, C.-H. Jen, K.-L. Chen, and L.-T. Juan, “Defective wafer detection using a denoising autoencoder for semiconductor manufacturing processes,” Advanced Engineering Informatics, vol. 46, p. 101166, 2020.
A. Haidar, “Rainfall Forecasting Using Artificial Neural Networks by,” no. September, 2018.
A. R. Sanubari, P. D. Kusuma, and C. Setianingsih, “Flood modelling and prediction using artificial neural network,” Proceedings - 2018 IEEE International Conference on Internet of Things and Intelligence System, IOTAIS 2018, pp. 227–233, 2019.
D. N. Fente and D. K. Singh, “Weather forecasting using artificial neural network,” in 2018 second international conference on inventive communication and computational technologies (ICICCT), 2018, pp. 1757–1761.
Z. LV, J. Zuo, and D. Rodriguez, “Predicting of Runoff Using an Optimized SWAT-ANN: A Case Study,” Journal of Hydrology: Regional Studies, vol. 29, no. April, 2020.
Y. Tikhamarine, D. Souag-Gamane, A. N. Ahmed, S. S. Sammen, O. Kisi, Y. F. Huang, and A. El-Shafie, “Rainfall-runoff modelling using improved machine learning methods: Harris hawks optimizer vs. particle swarm optimization,” Journal of Hydrology, vol. 589, no. March, p. 125133, 2020.
E. Papatheocharous, H. Papadopoulos, and A. S. Andreou, “A Comparison of Feature Selection Techniques for Software Cost Modelling and Estimation,” arXiv, no. June 2014, 2012.
K. Abdel-Nasser, M., Mahmoud, “Accurate photovoltaic power forecasting models using deep LSTM-RNN.,” Neural Comput & Applic, pp. 1–14, 2019.
A. A. F. and R. A. E.-K. Salma Alhagry, “Emotion Recognition based on EEG using LSTM Recurrent Neural Network,” International Journal of Advanced Computer Science and Applications(IJACSA), vol. 8, no. (10), 2017.
N. Zerhouni, R. Zemouri, and R. Gouriveau, “Defining and applying prediction performance metrics on a recurrent NARX time series model,” Neurocomputing, vol. 73, no. (13-15), pp. 2506–2521, 2010.
J. Hauke and T. Kossowski, “Comparison of Values of Pearson’s and Spearman’s Correlation Coefficients on the Same Sets of Data,” Quaestiones Geographicae, vol. 30, no. 2, pp. 87–93, 2011.
M. Al-Gabalawy, H. S. Ramadan, M. A. Mostafa, and S. A. Hussien, “Power Curve Estimation of a Wind Turbine Considering Different Weather Conditions using Machine Learning Algorithms,” in 2022 23rd International Middle East Power Systems Conference (MEPCON), 2022, pp. 1–8.
S. R. J. N. L. Hwang and A. Lippman, “Nonparametric multivariate density estimation: a comparative study,” IEEE Trans. on Signal Processing, vol. 42, no. 10, pp. 2795–2810, 1994.
M. Uzair and N. Jamil, “Effects of Hidden Layers on the Efficiency of Neural networks,” Proceedings - 2020 23rd IEEE International Multi-Topic Conference, INMIC 2020, pp. 1–6, 2020.
M. Nur Adli Zakaria, M. Abdul Malek, M. Zolkepli, and A. Najah Ahmed, “Application of artificial intelligence algorithms for hourly river level forecast: A case study of Muda River, Malaysia,” Alexandria Engineering Journal, vol. 60, no. 4, pp. 4015–4028, 2021.
R. Adnan, F. A. Ruslan, Z. M. Zain, and others, “Flood water level modelling and prediction using artificial neural network: Case study of Sungai Batu Pahat in Johor,” in 2012 IEEE Control and System Graduate Research Colloquium, 2012, pp. 22–25.
M. Moishin, R. C. Deo, R. Prasad, and N. Raj, “Designing Deep-based Learning Flood Forecast Model with ConvLSTM Hybrid Algorithm,” vol. XX, 2021.