High-Resolution Downscaling with Interpretable Relevant Vector Machine: Rainfall Prediction for Case Study in Selangor
DOI: http://dx.doi.org/10.62527/joiv.8.2.2700
Abstract
Keywords
Full Text:
PDFReferences
Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 29(28), 42539-42559
Bernama (2021, Dec 19). Once in 100 years: One month average rainfall poured down in one day. Th star. https://www.thestar.com.my/news/nation/2021/12/19/floods-heavy-rain-lasting-over-24-hours-equals-to-average-monthly-rainfall-occurring-once-in-100-years-says-environs-ministry
Deo, R.C., Samui, P. & Kim, D. Estimation of monthly evaporative loss using relevance vector machine, extreme learning machine and multivariate adaptive regression spline models. Stoch Environ Res Risk Assess 30, 1769–1784 (2016). https://doi-org.ezpustaka2.upsi.edu.my/10.1007/s00477-015-1153-y
Daniel, F. (2020). What is Machine Learning? Emerj The Al Research and Advisory Company. https://emerj.com/ai-glossary-terms/what-is-machine-learning/
Jollife, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065). https://doi.org/10.1098/rsta.2015.0202
Kang, H. (2013). The prevention and handling of the missing data. Korean journal of anesthesiology, 64(5), 402-406.
Lee, H., & Kang, K. (2015). Interpolation of missing precipitation data using kernel estimations for hydrologic modeling. Advances in Meteorology, 2015.
M. Bilal,Ari Y.B.A,Lukumon O. O., Taofeek D.A, Juan M.D.D &,Lukman A,A (2022) Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting, https://doi.org/10.1016/j.mlwa.2021.100204
Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., ... & Thiele‐Eich, I. (2010). Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Reviews of geophysics, 48(3).
McCuen, R. H., Knight, Z., & Cutter, A. G. (2006). Evaluation of the Nash–Sutcliffe efficiency index. Journal of hydrologic engineering, 11(6), 597-602
Mehta, P., Bukov, M., Wang, C. H., Day, A. G., Richardson, C., Fisher, C. K., & Schwab, D. J. (2019). A high-bias, low-variance introduction to machine learning for physicists. Physics reports, 810, 1-124.
Pepinsky, T. B. (2018). A note on listwise deletion versus multiple imputation. Political Analysis, 26(4), 480-488.
Qiao, W., Huang, K., Azimi, M., & Han, S. (2019). A novel hybrid prediction model for hourly gas consumption in supply side based on improved whale optimization algorithm and relevance vector machine.
Quinonero-Candela, J., & Hansen, L. K. (2002, May). Time series prediction based on the relevance vector machine with adaptive kernels. In 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing (Vol. 1, pp. I-985). IEEE.
Reddy, G. T., Reddy, M. P. K., Lakshmanna, K., Kaluri, R., Rajput, D. S., Srivastava, G., & Baker, T. (2020). Analysis of dimensionality reduction techniques on big data. IEEE Access, 8, 54776-54788.
Rogers, I., & Kirkham, C. (2005, July). JikesNODE and PearColator: A Jikes RVM operating system and legacy code execution environment. In 2nd ECOOP Workshop on Programm Languages and Operating Systems (ECOOP-PLOS’05).
Sachindra, D. A., Ahmed, K., Rashid, M. M., Shahid, S., & Perera, B. J. C. (2018). Statistical downscaling of precipitation using machine learning techniques. Atmospheric Research, 212, 240–258. https://doi.org/10.1016/j.atmosres.2018.05.022
Shaharudin, S. M., Andayani, S., Kismiantini, N. B., Kurniawan, A., Basri, M. A. A., & Zainuddin, N. H. (2020). Imputation methods for addressing missing data of monthly rainfall in Yogyakarta, Indonesia. International Journal, 9(1.4).
Silva, C., & Ribeiro, B. (2007). RVM ensemble for text classification. International Journal of Computational Intelligence Research, 3(1), 31-35.
Song, L., Duan, W., Li, Y. et al. A timescale decomposed threshold regression downscaling approach to forecasting South China early summer rainfall. Adv. Atmos. Sci. 33, 1071–1084 (2016). https://doi-org.ezpustaka2.upsi.edu.my/10.1007/s00376-016-5251-7
Stavseth, M. R., Clausen, T., & Røislien, J. (2019). How handling missing data may impact conclusions: A comparison of six different imputation methods for categorical questionnaire data. SAGE open medicine, 7, 2050312118822912.
Suhaimi, N., Ghazali, N. A., Nasir, M. Y., Mokhtar, M. I. Z., & Ramli, N. A. (2017). Markov Chain Monte Carlo method for handling missing data in air quality datasets. Malaysian journal of analytical sciences, 21(3), 552-559
Sulaiman.A. (2022). statistical downscaling of projecting rainfall amount based on svc-rvm mode. Faculty of science and mathematics sultan idris education university. Dissertation presented to qualify for a master’s degree in science (applied statistics) (research mode).
ur Rehman, N., & Aftab, H. (2019). Multivariate variational mode decomposition. IEEE Transactions on signal processing, 67(23), 6039-6052.
Tien Bui, D., Shahabi, H., Shirzadi, A., Chapi, K., Hoang, N. D., Pham, B. T., ... & Saro, L. (2018). A novel integrated approach of relevance vector machine optimized by imperialist competitive algorithm for spatial modeling of shallow landslides. Remote Sensing, 10(10), 1538.
Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. Journal of machine learning research, 1(Jun), 211-244.
Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate research, 30(1), 79-82.
Wu, S. F., Chang, C. Y., & Lee, S. J. (2015, March). Time series forecasting with missing values. In 2015 1st International Conference on Industrial Networks and Intelligent Systems (INISCom) (pp. 151-156). IEEE.
Xingmeng, J., Li, W., Liwu, P., Mingtao, G., & Daidi, H. (2016). Rolling Bearing Fault diagnosis based on ELCD permutation entropy and RVM. Journal of Engineering, 2016.
Zhang, Y., Zhou, B., Cai, X., Guo, W., Ding, X., & Yuan, X. (2021). Missing value imputation in multivariate time series with end-to-end generative adversarial networks. Information Sciences, 551, 67-82.
Zhao, H., Zheng, J., Xu, J., & Deng, W. (2019). Fault diagnosis method based on principal component analysis and broad learning system. IEEE Access, 7, 99263-99272.
Zhu, X., Zhang, S., Jin, Z., Zhang, Z., & Xu, Z. (2010). Missing value estimation for mixed-attribute data sets. IEEE Transactions on Knowledge and Data Engineering, 23(1), 110-121.