An Innovative Approach for Improving Navigation Performance of Robust Land-Based Vehicles
DOI: http://dx.doi.org/10.62527/joiv.8.3-2.2647
Abstract
Keywords
Full Text:
PDFReferences
A. Noureldin, T. B. Karamat, and J. Georgy, Fundamentals of inertial navigation, satellite-based positioning and their integration. Springer Berlin Heidelberg, 2013. doi: 10.1007/978-3-642-30466-8.
N. El-Sheimy and A. Youssef, “Inertial sensors technologies for navigation applications: state of the art and future trends,” Satellite Navigation, vol. 1, no. 1. Springer, Dec. 01, 2020. doi: 10.1186/s43020-019-0001-5.
Y. Liu, X. Fan, C. Lv, J. Wu, L. Li, and D. Ding, “An innovative information fusion method with adaptive Kalman filter for integrated INS/GPS navigation of autonomous vehicles,” Mech Syst Signal Process, vol. 100, pp. 605–616, Feb. 2018, doi: 10.1016/j.ymssp.2017.07.051.
E. S. Abdolkarimi and M. R. Mosavi, “A low-cost integrated MEMS-based INS/GPS vehicle navigation system with challenging conditions based on an optimized IT2FNN in occluded environments,” GPS Solutions, vol. 24, no. 4, Oct. 2020, doi: 10.1007/s10291-020-01023-9.
I. P. Prikhodko, B. Bearss, C. Merritt, J. Bergeron and C. Blackmer, "Towards self-navigating cars using MEMS IMU: Challenges and opportunities," 2018 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), Lake Como, Italy, 2018, pp. 1-4, doi: 10.1109/ISISS.2018.8358141.
A. Abosekeen, A. Noureldin, and M. J. Korenberg, “Improving the RISS/GNSS land-vehicles integrated navigation system using magnetic azimuth updates,” IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 3, pp. 1250–1263, Mar. 2020, doi: 10.1109/TITS.2019.2905871.
N. Li, L. Guan, Y. Gao, Z. Liu, Y. Wang, and H. Rong, “A low cost civil vehicular seamless navigation technology based on enhanced RISS/GPS between the outdoors and an underground garage,” Electronics (Switzerland), vol. 9, no. 1, Jan. 2020, doi: 10.3390/electronics9010120.
F. Wu, H. Luo, H. Jia, F. Zhao, Y. Xiao, and X. Gao, “Predicting the Noise Covariance with a Multitask Learning Model for Kalman Filter-Based GNSS/INS Integrated Navigation,” IEEE Trans Instrum Meas, vol. 70, 2021, doi: 10.1109/TIM.2020.3024357.
R. Van Der Merwe and E. A. Wan, “Sigma-Point Kalman Filters for Integrated Navigation,” 1995.
R. V. Garcia, P. C. P. M. Pardal, H. K. Kuga, and M. C. Zanardi, “Nonlinear filtering for sequential spacecraft attitude estimation with real data: Cubature Kalman Filter, Unscented Kalman Filter and Extended Kalman Filter,” Advances in Space Research, vol. 63, no. 2, pp. 1038–1050, Jan. 2019, doi: 10.1016/j.asr.2018.10.003.
D. Sabzevari and A. Chatraei, “INS/GPS Sensor Fusion based on Adaptive Fuzzy EKF with Sensitivity to Disturbances,” IET Radar, Sonar and Navigation, vol. 15, no. 11, pp. 1535–1549, Nov. 2021, doi: 10.1049/rsn2.12144.
M. G. Deepika and A. Arun, “Analysis of INS parameters and error reduction by integrating GPS and INS signals,” in Proceedings - 2018 International Conference on Design Innovations for 3Cs Compute Communicate Control, ICDI3C 2018, Institute of Electrical and Electronics Engineers Inc., Aug. 2018, pp. 18–23. doi: 10.1109/ICDI3C.2018.00013.
T. D. Powell, “Automated tuning of an extended Kalman filter using the downhill simplex algorithm,” Journal of Guidance, Control, and Dynamics, vol. 25, no. 5, pp. 901–908, 2002, doi: 10.2514/2.4983.
K. A. Myers and B. D. Tapley, “Adaptive Sequential Estimation with Unknown Noise Statistics,” 1976.
P. Matisko and V. Havlena, “Noise covariance estimation for Kalman filter tuning using Bayesian approach and Monte Carlo,” Int J Adapt Control Signal Process, vol. 27, no. 11, pp. 957–973, Nov. 2013, doi: 10.1002/acs.2369.
D.-J. Lee and K. T. Alfriend, “Adaptive Sigma Point Filtering for State and Parameter Estimation,” 2004.
S. Bolognani, L. Tubiana, and M. Zigliotto, “Extended Kalman filter tuning in sensorless PMSM drives,” IEEE Trans Ind Appl, vol. 39, no. 6, pp. 1741–1747, Nov. 2003, doi: 10.1109/TIA.2003.818991.
D. Loebis, R. Sutton, J. Chudley, and W. Naeem, “Adaptive tuning of a Kalman filter via fuzzy logic for an intelligent AUV navigation system,” Control Eng Pract, vol. 12, no. 12 SPEC. ISS., pp. 1531–1539, 2004, doi: 10.1016/j.conengprac.2003.11.008.
M. Elsheikh, A. Noureldin, and M. Korenberg, “Integration of GNSS Precise Point Positioning and Reduced Inertial Sensor System for Lane-Level Car Navigation,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 3, pp. 2246–2261, Mar. 2022, doi: 10.1109/TITS.2020.3040955.
M. Karaim, M. Tamazin, and A. Noureldin, “An efficient ultra-tight GPS/RISS integrated system for challenging navigation environments,” Applied Sciences (Switzerland), vol. 10, no. 10, May 2020, doi: 10.3390/app10103613.
A. Aboutaleb, A. S. El-Wakeel, H. Elghamrawy, and A. Noureldin, “LiDAR/RISS/GNSS dynamic integration for land vehicle robust positioning in challenging GNSS environments,” Remote Sens (Basel), vol. 12, no. 14, Jul. 2020, doi: 10.3390/rs12142323.
Y. Gao, Z. Liu, Y. Wang, and A. Noureldin, “A Hybrid RISS/GNSS Method During GNSS Outage in the Land Vehicle Navigation System,” IEEE Sens J, vol. 23, no. 8, pp. 8690–8702, Apr. 2023, doi: 10.1109/JSEN.2023.3257046.
N. Li, Y. Gao, L. Guan and M. Wu, "A Low-cost Underground Garage Real-time Navigation Algorithm based on the RISS and GPS System," 2020 Chinese Control And Decision Conference (CCDC), Hefei, China, 2020, pp. 533-538, doi: 10.1109/CCDC49329.2020.9164768.
A. Abosekeen, U. Iqbal, A. Noureldin, and M. J. Korenberg, “A Novel Multi-Level Integrated Navigation System for Challenging GNSS Environments,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 8, pp. 4838–4852, Aug. 2021, doi: 10.1109/TITS.2020.2980307.
U. Iqbal, A. Noureldin, J. Georgy, and M. J. Korenberg, “Application of System Identification Techniques for Integrated Navigation,” Institute of Electrical and Electronics Engineers (IEEE), Apr. 2021, pp. 1–6. doi: 10.1109/iccspa49915.2021.9385723.
C. Zhang, C. Cao, T. Li, and C. Guo, “An improved RISS-GPS ship navigation approach via azimuth updates and magnetometer-calibration technology,” Measurement: Journal of the International Measurement Confederation, vol. 175. Elsevier B.V., Apr. 01, 2021. doi: 10.1016/j.measurement.2021.109101.
Q. Xu, X. Li, and C. Y. Chan, “Enhancing Localization Accuracy of MEMS-INS/GPS/In-Vehicle Sensors Integration during GPS Outages,” IEEE Trans Instrum Meas, vol. 67, no. 8, pp. 1966–1978, Aug. 2018, doi: 10.1109/TIM.2018.2805231.
G. Hu, B. Gao, Y. Zhong, and C. Gu, “Unscented kalman filter with process noise covariance estimation for vehicular ins/gps integration system,” Information Fusion, vol. 64, pp. 194–204, Dec. 2020, doi: 10.1016/j.inffus.2020.08.005.
S. Liu, Z. Wang, Y. Chen, and G. Wei, “Protocol-Based Unscented Kalman Filtering in the Presence of Stochastic Uncertainties,” IEEE Trans Automat Contr, vol. 65, no. 3, pp. 1303–1309, Mar. 2020, doi: 10.1109/TAC.2019.2929817.
G. Hu, L. Ni, B. Gao, X. Zhu, W. Wang, and Y. Zhong, “Model Predictive Based Unscented Kalman Filter for Hypersonic Vehicle Navigation with INS/GNSS Integration,” IEEE Access, vol. 8, pp. 4814–4823, 2020, doi: 10.1109/ACCESS.2019.2962832.
G. A. Terejanu, “Unscented Kalman Filter Tutorial,” University at Buffalo, Buffalo (2011).