A Convolutional Neural Network-based Intelligence System for the Identification of Copra Maturity Levels

Luther Latumakulita - Sam Ratulangi University, North Sulawesi, Indonesia
Frangky J Paat - Sam Ratulangi University, North Sulawesi, Indonesia
Glenn Budiman - Sam Ratulangi University, North Sulawesi, Indonesia
Dedie Tooy - Sam Ratulangi University, North Sulawesi, Indonesia
Mayko Koibur - Ottow Geissler University, Papua, Indonesia
Noorul Islam - Kanpur Institute of Technology, Kanpur, India


Citation Format:



DOI: http://dx.doi.org/10.62527/joiv.8.3.2574

Abstract


The North Sulawesi Province, widely recognized as the Coconut Waving Province owing to its substantial coconut tree population, primarily depends on copra production. This research presents a novel methodology for determining copra maturity levels by utilizing a Convolutional Neural Network (CNN) on digital photographs, classifying them into three distinct stages: raw, half-ripe, and ripe. By employing a rigorous 10-fold cross-validation technique, our models demonstrated remarkable performance. Notably, even the model with the lowest performance achieved a commendable accuracy of 87.78% during the training and validation phases. The model that exhibited the highest level of performance achieved a perfect accuracy rate of 100%. Moreover, when subjected to real-world testing situations using novel data, the model with the lowest performance exhibited a noteworthy accuracy of 83.34%. In contrast, the highest-performing model achieved a flawless accuracy of 100%. Based on the findings above, an online system has been built that leverages the most optimal model, facilitating the assessment of copra maturity in real-time. The prospects encompass the integration of this methodology into copra sorting machinery, thereby yielding advantages for both agricultural producers and industrial sectors. This research enhances copra quality control processes and promotes sustainability in the copra industry. Further research could explore refining the CNN model to accommodate a broader range of copra variations and investigating automation possibilities in copra production processes. These endeavors would advance the efficacy and applicability of copra maturity classification methods, fostering continued innovation in the industry.


Keywords


CNN; classification; copra maturity levels; k-fold cross-validation

Full Text:

PDF

References


R. R. Simanjuntak and A. Liuw, “Innovative Sprinklers for Horticulturists in the Mountainous Area,” E3S Web Conf., vol. 388, p. 01002, May 2023, doi: 10.1051/e3sconf/202338801002.

P. Rethinam, “International Scenario of Coconut Sector,” in The Coconut Palm (Cocos nucifera L.) - Research and Development Perspectives, Singapore: Springer Singapore, 2018, pp. 21–56.

B. M. Kumar and T. K. Kunhamu, “Nature-based solutions in agriculture: A review of the coconut (Cocos nucifera L.)-based farming systems in Kerala, ‘the Land of Coconut Trees,’” Nature-Based Solut., vol. 2, p. 100012, Dec. 2022, doi: 10.1016/j.nbsj.2022.100012.

Y. Z. W. Purba and W. Saleh, “An analysis of the feasibility of the copra business in the village of Pendowo Harjo, sub-district of Sungsang, Banyuasin Regency,” IOP Conf. Ser. Earth Environ. Sci., vol. 102, p. 012068, Jan. 2018, doi: 10.1088/1755-1315/102/1/012068.

R. S. Subramaniyam and A. Girish, “Performance Analysis on Diesel Engine using Neem and Soya Bean Oil,” Int. J. Emerg. Technol. Eng. Res., vol. 5, no. 8, pp. 27–30, 2017.

S. K. Mohamed, N. A. Sakr, and N. A. Hikal, “A Review of Breast Cancer Classification and Detection Techniques,” Int. J. Adv. Sci. Comput. Eng., vol. 3, no. 3, pp. 128–139, Oct. 2021, doi: 10.30630/ijasce.3.3.55.

P. A. S. Rani and N. S. Singh, “Paddy Leaf Symptom-based Disease Classification Using Deep CNN with ResNet-50,” Int. J. Adv. Sci. Comput. Eng., vol. 4, no. 2, pp. 88–94, Aug. 2022, doi: 10.30630/ijasce.4.2.83.

E. J. Kusuma, I. Pantiawati, and S. Handayani, “Melanoma Classification based on Simulated Annealing Optimization in Neural Network,” Knowl. Eng. Data Sci., vol. 4, no. 2, p. 97, Mar. 2022, doi: 10.17977/um018v4i22021p97-104.

A. A. Pinilas, L. A. Latumakulita, and D. Hatidja, “Identification of Sea Urchins in the Melonguane Coastal Area using Multilayer Perceptron Neural Network,” Ilk. J. Ilm., vol. 14, no. 2, pp. 169–177, Aug. 2022, doi: 10.33096/ilkom.v14i2.1208.169-177.

L. A. Latumakulita et al., “Combination of Feature Extractions for Classification of Coral Reef Fish Types Using Backpropagation Neural Network,” JOIV Int. J. Informatics Vis., vol. 6, no. 3, p. 643, Sep. 2022, doi: 10.30630/joiv.6.3.1082.

R. Suhana, W. F. Mahmudy, and A. S. Budi, “Fish Image Classification Using Adaptive Learning Rate In Transfer Learning Method,” Knowl. Eng. Data Sci., vol. 5, no. 1, p. 67, Jun. 2022, doi: 10.17977/um018v5i12022p67-77.

F. M. D. Mandagi, F. J. Paat, D. Tooy, S. E. Pakasi, and S. Wantasen, “Web-based system for medicinal plants identification using convolutional neural network,” Bull. Soc. Informatics Theory Appl., vol. 6, no. 2, pp. 158–167, 2022.

S. Anatya, V. Christanti Mawardi, and J. Hendryli, “Fruit Maturity Classification Using Convolutional Neural Networks Method,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1007, no. 1, p. 012149, Dec. 2020, doi: 10.1088/1757-899X/1007/1/012149.

H. Habaragamuwa, Y. Ogawa, T. Suzuki, T. Shiigi, M. Ono, and N. Kondo, “Detecting greenhouse strawberries (mature and immature), using deep convolutional neural network,” Eng. Agric. Environ. Food, vol. 11, no. 3, pp. 127–138, Jul. 2018, doi: 10.1016/j.eaef.2018.03.001.

R. I. Marasigan Jr, “Copra Meat Classification using Convolutional Neural Network,” Int. J. Emerg. Trends Eng. Res., vol. 8, no. 2, pp. 435–439, Feb. 2020, doi: 10.30534/ijeter/2020/30822020.

N. Chauhan, M. Singh, A. Verma, A. Parasher, and G. Budhiraja, “Implementation of database using python flask framework,” Int. J. Eng. Comput. Sci., vol. 8, no. 12, pp. 24894–24899, Dec. 2019, doi: 10.18535/ijecs/v8i12.4390.

Q. H. Nguyen et al., “Influence of Data Splitting on Performance of Machine Learning Models in Prediction of Shear Strength of Soil,” Math. Probl. Eng., vol. 2021, pp. 1–15, Feb. 2021, doi: 10.1155/2021/4832864.

I. K. Nti, O. Nyarko-Boateng, and J. Aning, “Performance of Machine Learning Algorithms with Different K Values in K-fold CrossValidation,” Int. J. Inf. Technol. Comput. Sci., vol. 13, no. 6, pp. 61–71, Dec. 2021, doi: 10.5815/ijitcs.2021.06.05.

I. Iddrisu, P. Appiahene, O. Appiah, and I. Fuseini, “Exploring the Impact of Students Demographic Attributes on Performance Prediction through Binary Classification in the KDP Model,” Knowl. Eng. Data Sci., vol. 6, no. 1, p. 24, Jun. 2023, doi: 10.17977/um018v6i12023p24-40.

M. Walid, N. L. N. Sahbaniya, H. Hozairi, F. Baskoro, and A. Y. Wijaya, “K-Means Clustering and Multilayer Perceptron for Categorizing Student Business Groups,” Knowl. Eng. Data Sci., vol. 6, no. 1, p. 69, Sep. 2023, doi: 10.17977/um018v6i12023p69-78.

Y. Jung, “Multiple predicting K -fold cross-validation for model selection,” J. Nonparametr. Stat., vol. 30, no. 1, pp. 197–215, Jan. 2018, doi: 10.1080/10485252.2017.1404598.

A. Azhari, A. Susanto, A. Pranolo, and Y. Mao, “Neural Network Classification of Brainwave Alpha Signals in Cognitive Activities,” Knowl. Eng. Data Sci., vol. 2, no. 2, p. 47, 2019, doi: 10.17977/um018v2i22019p47-57.

D. M. N. Fajri, W. F. Mahmudy, and T. Yulianti, “Detection of Disease and Pest of Kenaf Plant Based on Image Recognition with VGGNet19,” Knowl. Eng. Data Sci., vol. 4, no. 1, p. 55, Aug. 2021, doi: 10.17977/um018v4i12021p55-68.

I. N. G. A. Astawa, M. L. Radhitya, I. W. R. Ardana, and F. A. Dwiyanto, “Face Images Classification using VGG-CNN,” Knowl. Eng. Data Sci., vol. 4, no. 1, p. 49, Aug. 2021, doi: 10.17977/um018v4i12021p49-54.

E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, “Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 2, pp. 645–657, Feb. 2017, doi: 10.1109/TGRS.2016.2612821.

J. Bernal et al., “Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review,” Artif. Intell. Med., vol. 95, pp. 64–81, Apr. 2019, doi: 10.1016/j.artmed.2018.08.008.

A. P. Wibawa et al., “Deep Learning Approaches with Optimum Alpha for Energy Usage Forecasting,” Knowl. Eng. Data Sci., vol. 6, no. 2, p. 170, Oct. 2023, doi: 10.17977/um018v6i22023p170-187.

A. L. Katole, K. P. Yellapragada, A. K. Bedi, S. S. Kalra, and M. Siva Chaitanya, “Hierarchical Deep Learning Architecture for 10K Objects Classification,” in Computer Science & Information Technology ( CS & IT ), Aug. 2015, pp. 77–93, doi: 10.5121/csit.2015.51408.

A. P. Wibawa, H. K. Fithri, I. A. E. Zaeni, and A. Nafalski, “Generating Javanese Stopwords List using K-means Clustering Algorithm,” Knowl. Eng. Data Sci., vol. 3, no. 2, p. 106, Dec. 2020, doi: 10.17977/um018v3i22020p106-111.

M. Heydarian, T. E. Doyle, and R. Samavi, “MLCM: Multi-Label Confusion Matrix,” IEEE Access, vol. 10, pp. 19083–19095, 2022, doi: 10.1109/ACCESS.2022.3151048.

P. M. Divya, B. S. Roopa, C. Manusha, and P. Balannara, “A concise review on oil extraction methods, nutritional and therapeutic role of coconut products,” J. Food Sci. Technol., vol. 60, no. 2, pp. 441–452, Feb. 2023, doi: 10.1007/s13197-022-05352-0.

S. V. Ramesh, R. Sudha, V. Niral, and M. K. Rajesh, “Enhancing Genetic Gain in Coconut: Conventional, Molecular, and Genomics-Based Breeding Approaches,” in Accelerated Plant Breeding, Volume 4, Cham: Springer International Publishing, 2022, pp. 313–357.

A. Ruospo, E. Sanchez, M. Traiola, I. O’Connor, and A. Bosio, “Investigating data representation for efficient and reliable Convolutional Neural Networks,” Microprocess. Microsyst., vol. 86, p. 104318, Oct. 2021, doi: 10.1016/j.micpro.2021.104318.

K. Zhao et al., “Algorithm-Based Fault Tolerance for Convolutional Neural Networks,” IEEE Trans. Parallel Distrib. Syst., pp. 1–1, 2021, doi: 10.1109/TPDS.2020.3043449.

G. Ortac and G. Ozcan, “Comparative study of hyperspectral image classification by multidimensional Convolutional Neural Network approaches to improve accuracy,” Expert Syst. Appl., vol. 182, p. 115280, Nov. 2021, doi: 10.1016/j.eswa.2021.115280.

S. Valverde et al., “One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks,” NeuroImage Clin., vol. 21, p. 101638, 2019, doi: 10.1016/j.nicl.2018.101638.

K.-S. Lee, J. Y. Kim, E. Jeon, W. S. Choi, N. H. Kim, and K. Y. Lee, “Evaluation of Scalability and Degree of Fine-Tuning of Deep Convolutional Neural Networks for COVID-19 Screening on Chest X-ray Images Using Explainable Deep-Learning Algorithm,” J. Pers. Med., vol. 10, no. 4, p. 213, Nov. 2020, doi: 10.3390/jpm10040213.

H. Mu’min, E. Telaumbanua, R. Sya’rani, B. Basir, and I. W. Hasdiansa, “Building Competitive Advantage: Copra Marketing Strategy with SWOT Analysis Approach,” J. Econ. Entrep. Manag. Bus. Account., vol. 2, no. 1, pp. 16–28, Jan. 2024, doi: 10.61255/jeemba.v2i1.285.

W. K. Tolinggi, D. Salman, Rahmadanih, and H. Iswoyo, “Farmer regeneration and knowledge co-creation in the sustainability of coconut agribusiness in Gorontalo, Indonesia,” Open Agric., vol. 8, no. 1, Jan. 2023, doi: 10.1515/opag-2022-0162.

T. Saheb, M. Dehghani, and T. Saheb, “Artificial intelligence for sustainable energy: A contextual topic modeling and content analysis,” Sustain. Comput. Informatics Syst., vol. 35, p. 100699, Sep. 2022, doi: 10.1016/j.suscom.2022.100699.