Implementation of Multi Extension in Blockchain-Based IoT Platform for Industrial IoT Devices

Agus Prayudi - Politeknik Elektronika Negeri Surabaya, Surabaya, Indonesia
Sritrusta Sukaridhoto - Politeknik Elektronika Negeri Surabaya, Surabaya, Indonesia
Muhammad Udin Harun Al Rasyid - Politeknik Elektronika Negeri Surabaya, Surabaya, Indonesia
Oktafian Hakim - Politeknik Elektronika Negeri Surabaya, Surabaya, Indonesia
Yohanes Yohanie Fridelin Panduman - Okayama University, Okayama 700-8530, Japan
Rizqi Putri Nourma Budiarti - Universitas Nadhlatul Ulama Surabaya, Surabaya, Indonesia

Citation Format:



The rise of the Internet of Things (IoT) has led to the creation of technologies to improve human life. IoT involves integrating the Internet with the physical world, spanning applications like smart homes, industries, supply chains, academia, and more. By the end of 2020, around 212 billion IoT devices were globally deployed, presenting substantial opportunities for manufacturers and diverse applications. There have been numerous implementations of IoT across various fields, including Blockchain IoT (B-IoT), Artificial Intelligence of Things (AIoT), Digital Twin, and new communication protocols like the Matter protocol. We conducted a comprehensive testing of the blockchain (B-IoT) extension system on various bandwidths and scenarios, such as blockchain API execution time, speed, retention performance, and smart contract vulnerability testing. Our testing has been successful, and several messaging systems were used. Kafka was recommended to overcome the pending transaction problem caused by unprocessed messages. Our smart contract exhibited high severity. The Artificial Intelligence of Things extension, tested on real environments for person and vehicle counters, has shown successful results. Digital Twin, integrated into the IoT platform to perform and control 3D assets such as the postgraduate PENS building, has demonstrated efficient performance. Matter protocol achieved an average task execution speed of 0.48 tasks per second. Matter P2P communication was also successfully tested in this research by implementing the Access Control List (ACL) command.


Blockchain; Artificial Intelligence of Things; Digital Twin; Matter Protocol.

Full Text:



A. Al Sadawi, M. S. Hassan, and M. Ndiaye, “A Survey on the Integration of Blockchain With IoT to Enhance Performance and Eliminate Challenges,” IEEE Access, vol. 9, pp. 54478–54497, Aug. 2021, doi: 10.1109/ACCESS.2021.3070555.

T. Kim, C. Ramos, and S. Mohammed, “Smart City and IoT,” Future Generation Computer Systems, vol. 76, pp. 159–162, 2017, doi:

A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE Communications Surveys and Tutorials, vol. 17, no. 4, pp. 2347–2376, Oct. 2015, doi: 10.1109/COMST.2015.2444095.

O. Novo, “Blockchain Meets IoT: An Architecture for Scalable Access Management in IoT,” IEEE Internet Things J, vol. 5, no. 2, pp. 1184–1195, Apr. 2018, doi: 10.1109/JIOT.2018.2812239.

Z. Yang, K. Yang, L. Lei, K. Zheng, and V. C. M. Leung, “Blockchain-based decentralized trust management in vehicular networks,” IEEE Internet Things J, vol. 6, no. 2, pp. 1495–1505, Apr. 2019, doi: 10.1109/JIOT.2018.2836144.

O. Novo, “Scalable Access Management in IoT Using Blockchain: A Performance Evaluation,” IEEE Internet Things J, vol. 6, no. 3, pp. 4694–4701, Jun. 2019, doi: 10.1109/JIOT.2018.2879679.

E. Tijan, S. Aksentijević, K. Ivanić, and M. Jardas, “Blockchain technology implementation in logistics,” Sustainability (Switzerland), vol. 11, no. 4. MDPI, Feb. 01, 2019. doi: 10.3390/su11041185.

Q. Wang, X. Zhu, Y. Ni, L. Gu, and H. Zhu, “Blockchain for the IoT and industrial IoT: A review,” Internet of Things, vol. 10, p. 100081, 2020, doi:

D. Minoli and B. Occhiogrosso, “Blockchain mechanisms for IoT security,” Internet of Things (Netherlands), vol. 1–2. Elsevier B.V., pp. 1–13, Sep. 01, 2018. doi: 10.1016/j.iot.2018.05.002.

D. Miller, “Blockchain and the Internet of Things in the Industrial Sector,” IT Prof, vol. 20, no. 3, pp. 15–18, May 2018, doi: 10.1109/MITP.2018.032501742.

A. D. Dwivedi, G. Srivastava, S. Dhar, and R. Singh, “A Decentralized Privacy-Preserving Healthcare Blockchain for IoT,” Sensors, vol. 19, no. 2, 2019, doi: 10.3390/s19020326.

X. and O. S. and A. M. and J. Y. Tseng Lewis and Yao, “Blockchain-based database in an IoT environment: challenges, opportunities, and analysis,” Cluster Comput, vol. 23, no. 3, pp. 2151–2165, Sep. 2020, doi: 10.1007/s10586-020-03138-7.

N. A. Satrio, S. Sukaridhoto, M. U. H. Al Rasyid, R. P. N. Budiarti, I. A. Al-Hafidz, and E. D. Fajrianti, “Blockchain integration for hospital information system management,” Bali Medical Journal, vol. 11, no. 3, pp. 1195–1201, 2022, doi: 10.15562/bmj.v11i3.3540.

S. Misra, A. Mukherjee, A. Roy, N. Saurabh, Y. Rahulamathavan, and M. Rajarajan, “Blockchain at the Edge: Performance of Resource-Constrained IoT Networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 1, pp. 174–183, 2021, doi: 10.1109/TPDS.2020.3013892.

C. Arissabarno et al., “Blockchain Integration for Mixed Reality Based Smart Lab Systems,” in 2023 International Electronics Symposium (IES) (IES 2023), Bali, Indonesia, Aug. 2023, p. 7.

O. Debauche, S. Mahmoudi, S. A. Mahmoudi, P. Manneback, and F. Lebeau, “A new Edge Architecture for AI-IoT services deployment,” Procedia Comput Sci, vol. 175, pp. 10–19, Jan. 2020, doi: 10.1016/J.PROCS.2020.07.006.

S. Calo, M. Touna, D. Verma, and A. Cullen, “Edge computing architecture for applying AI to IoT,” Nov. 2017, pp. 3012–3016. doi: 10.1109/BigData.2017.8258272.

C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, and O. Rana, “Fog Computing for the Internet of Things: A Survey,” ACM Trans. Internet Technol., vol. 19, no. 2, Apr. 2019, doi: 10.1145/3301443.

F. Tao, B. Xiao, Q. Qi, J. Cheng, and P. Ji, “Digital twin modeling,” J Manuf Syst, vol. 64, pp. 372–389, Jul. 2022, doi: 10.1016/J.JMSY.2022.06.015.

C. Pylianidis, S. Osinga, and I. N. Athanasiadis, “Introducing digital twins to agriculture,” Comput Electron Agric, vol. 184, p. 105942, May 2021, doi: 10.1016/J.COMPAG.2020.105942.

Y. Y. Fridelin, M. R. Ulil Albaab, A. R. Anom Besari, S. Sukaridhoto, and A. Tjahjono, “Implementation of Microservice Architectures on SEMAR Extension for Air Quality Monitoring,” in 2018 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC), 2018, pp. 218–224. doi: 10.1109/KCIC.2018.8628575.

Y. Y. F. Panduman, A. R. A. Besari, S. Sukaridhoto, R. P. N. Budiarti, R. W. Sudibyo, and F. Nobuo, “Implementation of integration VaaMSN and SEMAR for wide coverage air quality monitoring,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 16, no. 6, pp. 2630–2642, Dec. 2018, doi: 10.12928/TELKOMNIKA.v16i6.10152.

Y. Y. F. Panduman, N. Funabiki, P. Puspitaningayu, M. Kuribayashi, S. Sukaridhoto, and W. C. Kao, “Design and Implementation of SEMAR IoT Server Platform with Applications,” Sensors, vol. 22, no. 17, Sep. 2022, doi: 10.3390/s22176436.

Y. Y. F. Panduman et al., “An Edge Device Framework in SEMAR IoT Application Server Platform,” Information, vol. 14, no. 6, 2023, doi: 10.3390/info14060312.

Y. Y. F. Panduman, N. Funabiki, P. Puspitaningayu, M. Sakagami, and S. Sukaridhoto, “Implementations of Integration Functions in IoT Application Server Platform,” in 2022 Fifth International Conference on Vocational Education and Electrical Engineering (ICVEE), Sep. 2022, pp. 72–77. doi: 10.1109/ICVEE57061.2022.9930422.

Y. Y. F. Panduman, S. Sukaridhoto, A. Tjahjono, and R. P. N. Budiarti, “Implementation SEMAR-IoT-platform for vehicle as a mobile sensor network,” JOIV: International Journal on Informatics Visualization, vol. 4, no. 4, pp. 201–207, 2020, doi:

M. F. Falah, S. Sukaridhoto, M. U. H. Al Rasyid, and H. Wicaksono, “Design of Virtual Engineering and Digital Twin Platform as Implementation of Cyber-Physical Systems,” Procedia Manuf, vol. 52, pp. 331–336, 2020, doi:

Y. Y. Fridelin Panduman, S. Sukaridhoto, and A. Tjahjono, “A Survey of IoT Platform Comparison for Building Cyber-Physical System Architecture,” in 2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), 2019, pp. 238–243. doi: 10.1109/ISRITI48646.2019.9034650.

W. Zegeye, A. Jemal, and K. Kornegay, “Connected Smart Home over Matter Protocol,” in 2023 IEEE International Conference on Consumer Electronics (ICCE), 2023, pp. 1–7. doi: 10.1109/ICCE56470.2023.10043520.

S. Sukaridhoto, A. Prayudi, M. U. H. Al Rasyid, and R. P. Nourma Budiarti, “A survey and conceptual of Internet of Things system for remote healthcare monitoring,” Bali Medical Journal, vol. 12, no. 3, pp. 2840–2845, Sep. 2023, doi: 10.15562/bmj.v12i3.4441.