Breast Cancer Prediction Using a Hybrid Data Mining Model
DOI: http://dx.doi.org/10.30630/joiv.3.4.240
Abstract
Keywords
Full Text:
PDFReferences
DeSantis, C., Ma, J., Bryan, L. and Jemal, A., 2014. Breast cancer statistics, 2013. CA: a cancer journal for clinicians, 64(1), pp.52-62.
Harirchi, I., Karbakhsh, M., Kashefi, A. and Momtahen, A.J., 2004. Breast cancer in Iran: results of a multi-center study. Asian pacific journal of cancer prevention, 5(1), pp.24-27.
Delen, D., Walker, G. and Kadam, A., 2005. Predicting breast cancer survivability: a comparison of three data mining methods. Artificial intelligence in medicine, 34(2), pp.113-127.
Gupta, S., Kumar, D. and Sharma, A., 2011. Data mining classification techniques applied for breast cancer diagnosis and prognosis. Indian Journal of Computer Science and Engineering (IJCSE), 2(2), pp.188-195.
Kharya, S., 2012. Using data mining techniques for diagnosis and prognosis of cancer disease. arXiv preprint arXiv:1205.1923.
Rani, K.U., 2010. Parallel approach for diagnosis of breast cancer using neural network technique. International Journal of Computer Applications, 10(3), pp.1-5.
Kiani, B. and Atashi, A., 2014. A prognostic model based on data mining techniques to predict breast cancer recurrence. Journal of Health and Biomedical Informatics, 1(1), pp.26-31.
GarcÃa-Laencina, P.J., Abreu, P.H., Abreu, M.H. and Afonoso, N., 2015. Missing data imputation on the 5-year survival prediction of breast cancer patients with unknown discrete values. Computers in biology and medicine, 59, pp.125-133.
Chaurasia, V. and Pal, S., 2017. Data mining techniques: to predict and resolve breast cancer survivability. International Journal of Computer Science and Mobile Computing IJCSMC, 3(1), pp. 10 – 22.
Shajahaan, S.S., Shanthi, S. and ManoChitra, V., 2013. Application of data mining techniques to model breast cancer data. International Journal of Emerging Technology and Advanced Engineering, 3(11), pp.362-369.
Senturk, Z.K. and Kara, R., 2014. Breast cancer diagnosis via data mining: performance analysis of seven different algorithms. Computer Science & Engineering, 4(1), p.35.
Han, J., Pei, J. and Kamber, M., 2011. Data mining: concepts and techniques. Elsevier.
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original).