Classification of Industrial Relations Dispute Court Verdict Document with XGBoost and Bidirectional LSTM
DOI: http://dx.doi.org/10.30630/joiv.7.3-2.2373
Abstract
Keywords
Full Text:
PDFReferences
R. Keeling et al., “Empirical Comparisons of CNN with Other Learning Algorithms for Text Classification in Legal Document Review,†in Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019, Dec. 2019, pp. 2038–2042, doi: 10.1109/BigData47090.2019.9006248.
J. Lee and H. Lee, “A Comparison Study on Legal Document Classification Using Deep Neural Networks,†in ICTC 2019 - 10th International Conference on ICT Convergence: ICT Convergence Leading the Autonomous Future, Oct. 2019, pp. 926–928, doi: 10.1109/ICTC46691.2019.8939926.
M. Y. Noguti, E. Vellasques, and L. S. Oliveira, “Legal Document Classification: An Application to Law Area Prediction of Petitions to Public Prosecution Service,†Jul. 2020, doi: 10.1109/IJCNN48605.2020.9207211.
K. Dedes, A. B. P. Utama, A. P. Wibawa, A. N. Afandi, A. N. Handayani, and L. Hernandez, “Neural Machine Translation of Spanish-English Food Recipes Using LSTM,†JOIV Int. J. Informatics Vis., vol. 6, no. 2, pp. 290–297, Jun. 2022, doi: 10.30630/JOIV.6.2.804.
Y. Zhang, “Research on text classification method based on lstm neural network model,†Proc. IEEE Asia-Pacific Conf. Image Process. Electron. Comput. IPEC 2021, pp. 1019–1022, Apr. 2021, doi: 10.1109/IPEC51340.2021.9421225.
R. Saputra, A. Waworuntu, and A. Rusli, “Classification of Indonesian News using LSTM-RNN Method,†Proc. 2021 6th Int. Conf. New Media Stud. CONMEDIA 2021, pp. 72–77, 2021, doi: 10.1109/CONMEDIA53104.2021.9617187.
S. Undavia, A. Meyers, and J. E. Ortega, “A comparative study of classifying legal documents with neural networks,†in Proceedings of the 2018 Federated Conference on Computer Science and Information Systems, FedCSIS 2018, 2018, pp. 515–522, doi: 10.15439/2018F227.
M. Goudjil, M. Koudil, M. Bedda, and N. Ghoggali, “A Novel Active Learning Method Using SVM for Text Classification,†Int. J. Autom. Comput., vol. 15, no. 3, pp. 290–298, 2018, doi: 10.1007/s11633-015-0912-z.
N. Kalcheva, M. Karova, and I. Penev, “Comparison of the accuracy of SVM kemel functions in text classification,†in Proceedings of the International Conference on Biomedical Innovations and Applications, BIA 2020, Sep. 2020, pp. 141–145, doi: 10.1109/BIA50171.2020.9244278.
C. A. E. Piter, S. Hadi, and I. N. Yulita, “Multi-Label Classification for Scientific Conference Activities Information Text Using Extreme Gradient Boost (XGBoost) Method,†in 2021 International Conference on Artificial Intelligence and Big Data Analytics, Oct. 2022, pp. 1–5, doi: 10.1109/icaibda53487.2021.9689699.
Z. Qi, “The Text Classification of Theft Crime Based on TF-IDF and XGBoost Model,†in Proceedings of 2020 IEEE International Conference on Artificial Intelligence and Computer Applications, ICAICA 2020, Jun. 2020, pp. 1241–1246, doi: 10.1109/ICAICA50127.2020.9182555.
R. Anhar, T. B. Adji, and N. Akhmad Setiawan, “Question classification on question-answer system using bidirectional-LSTM,†Jul. 2019, doi: 10.1109/ICST47872.2019.9166190.
J. Li, Y. Xu, and H. Shi, “Bidirectional LSTM with Hierarchical Attention for Text Classification,†in Proceedings of 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference, IAEAC 2019, Dec. 2019, pp. 456–459, doi: 10.1109/IAEAC47372.2019.8997969.
F. Hartono, R. Lim, and L. P. Dewi, “Pembuatan Sistem Rumah Pintar dengan Voice Assistant di Raspberry Pi,†J. Infra, vol. 8, no. 1, pp. 82–88, Apr. 2020.
P. Verma, A. Goyal, and Y. Gigras, “Email phishing: text classification using natural language processing,†Comput. Sci. Inf. Technol., vol. 1, no. 1, pp. 1–12, 2020, doi: 10.11591/csit.v1i1.p1-12.
M. Dwarampudi and N. V. S. Reddy, “Effects of padding on LSTMs and CNNs,†2019.
J. Dr. Menyhárt and J. H. Gomes Da Costa Cavalcanti, “LSI with Support Vector Machine for Text Categorization – a practical example with Python,†Int. J. Eng. Manag. Sci., vol. 6, no. 3, pp. 18–29, 2021, doi: 10.21791/ijems.2021.3.2.
D. & E. A. A. Sudana, Seminar Tahunan Linguistik 2018, no. Setali. 2016.
S. Thongsuwan, S. Jaiyen, A. Padcharoen, and P. Agarwal, “ConvXGB: A new deep learning model for classification problems based on CNN and XGBoost,†Nucl. Eng. Technol., vol. 53, no. 2, pp. 522–531, 2021, doi: 10.1016/j.net.2020.04.008.
C. W. Chen, S. P. Tseng, T. W. Kuan, and J. F. Wang, “Outpatient text classification using attention-based bidirectional LSTM for robot-assisted servicing in hospital,†Inf., vol. 11, no. 2, 2020, doi: 10.3390/info11020106.
K. Shah, H. Patel, D. Sanghvi, and M. Shah, “A Comparative Analysis of Logistic Regression, Random Forest and KNN Models for the Text Classification,†Augment. Hum. Res., vol. 5, no. 1, 2020, doi: 10.1007/s41133-020-00032-0.
D. M. W. Powers, “Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation,†pp. 37–63, 2020.
R. Doon, T. Kumar Rawat, and S. Gautam, “Cifar-10 classification using deep convolutional neural network,†in 1st International Conference on Data Science and Analytics, PuneCon 2018 - Proceedings, 2018, no. x, pp. 1–5, doi: 10.1109/PUNECON.2018.8745428.
Chandrapaul, R. Soni, S. Sharma, H. Fagna, and S. Mittal, “News analysis using word cloud,†in Lecture Notes in Electrical Engineering, 2019, vol. 526, pp. 55–64, doi: 10.1007/978-981-13-2553-3_6.
A. Haidar, B. Verma, and R. Haidar, “A Swarm based Optimization of the XGBoost Parameters,†vol. 16, no. 4, pp. 74–81.
C. Bian, H. He, and S. Yang, “Stacked bidirectional long short-term memory networks for state-of-charge estimation of lithium-ion batteries,†Energy, vol. 191, p. 116538, 2020, doi: 10.1016/j.energy.2019.116538.
T. Jiang, D. Wang, L. Sun, H. Yang, Z. Zhao, and F. Zhuang, “LightXML: Transformer with Dynamic Negative Sampling for High-Performance Extreme Multi-label Text Classification,†2021.
G. Chen, P. Chen, Y. Shi, C.-Y. Hsieh, B. Liao, and S. Zhang, “Rethinking the Usage of Batch Normalization and Dropout in the Training of Deep Neural Networks,†2019.
B. Å krlj, J. Kralj, N. LavraÄ, and S. Pollak, “Towards Robust Text Classification with Semantics-Aware Recurrent Neural Architecture,†Mach. Learn. Knowl. Extr., vol. 1, no. 2, pp. 575–589, 2019, doi: 10.3390/make1020034.
S. Sun, Z. Cao, H. Zhu, and J. Zhao, “A Survey of Optimization Methods from a Machine Learning Perspective,†IEEE Trans. Cybern., vol. 50, no. 8, pp. 3668–3681, 2020, doi: 10.1109/TCYB.2019.2950779.
Z. Yang et al., “TextBrewer: An Open-Source Knowledge Distillation Toolkit for Natural Language Processing,†2020, pp. 9–16, doi: 10.18653/v1/2020.acl-demos.2.