Attributes Classification for Elaborating the Information of Digital and Imaging Mapping

Riki Mukhaiyar - Universitas Negeri Padang, Professor HAMKA Street, Padang, 25171, Indonesia
Utriweni Mukhaiyar - Institut Teknologi Bandung, Jalan Ganesha, Bandung, 40132, Indonesia


Citation Format:



DOI: http://dx.doi.org/10.62527/joiv.8.3-2.2353

Abstract


The rapid development of information has made it possible for everyone to obtain the latest information, complete and accurate, in real time, anytime, anywhere, all over the world. Any information is fine catching up by updated with the latest news and even detailed information on local conditions. With the same analogy, detailed information regarding land utilization, land containing, landscape provision, earth surface contour, etc., are required to inform and elaborate any appropriate decision needed. The Geographic information systems (GIS) is a recent technology commonly used by research in earth science to facilitate many layered detail information by one way to get up-to-date, detailed information. In this research, the GIS utilizes several types of imaging data such remote sensing images and digitize images. As the name suggests, this system captures detailed geographic information about a location or region. By inputting classified images of remote sensing results into a GIS database at regular intervals (adjusted as necessary, such as every year, every two years, every three years, etc.), the number of information sources that can be obtained increases. There are several reasons for that. First, remote sensing images are images that cover the entire surface of the Earth. Next, remote sensing images are images that contain information about the state of the earth's surface. Third, a variety of information can be obtained by performing appropriate image processing. Furthermore, this research could be elaborated by implementing an artificial intelligent algorithm to create a robust outcome.


Keywords


classification; image processing; imaging mapping; digital mapping

Full Text:

PDF

References


N. Nurdin, S. S. Pettalongi, and M. Mangasing, “Implementation of Geographic Information System Base On Google Maps API to Determine Bidikmisi Scholarship Recipient Distribution in Central Sulawesi Indonesia,” Journal of Humanities and Social Sciences Studies, vol. 3, no. 12, pp. 38–53, Dec. 2021, doi:10.32996/jhsss.2021.3.12.5.

S. Raj, K. S. Rawat, S. K. Singh, and A. K. Mishra, “Groundwater potential zones identification and validation in Peninsular India,” Geology, Ecology, and Landscapes, vol. 8, no. 1, pp. 86–100, Jul. 2022, doi: 10.1080/24749508.2022.2097375.

C. B. Pande et al., “Delineation of groundwater potential zones for sustainable development and planning using analytical hierarchy process (AHP), and MIF techniques,” Applied Water Science, vol. 11, no. 12, Nov. 2021, doi: 10.1007/s13201-021-01522-1.

K. S. Rawat, L. Jeyakumar, S. K. Singh, and V. K. Tripathi, “Appraisal of groundwater with special reference to nitrate using statistical index approach,” Groundw Sustain Dev, vol. 8, pp. 49–58, Apr. 2019, doi:10.1016/j.gsd.2018.07.006.

R. B. Zolekar and V. S. Bhagat, “Multi-criteria land suitability analysis for agriculture in hilly zone: Remote sensing and GIS approach,” Comput Electron Agric, vol. 118, pp. 300–321, Oct. 2015, doi: 10.1016/j.compag.2015.09.016.

S. O. Tweed, M. Leblanc, J. A. Webb, and M. W. Lubczynski, “Remote sensing and GIS for mapping groundwater recharge and discharge areas in salinity prone catchments, southeastern Australia,” Hydrogeol J, vol. 15, no. 1, pp. 75–96, Feb. 2007, doi:10.1007/s10040-006-0129-x.

A. Arabameri, K. Rezaei, A. Cerda, L. Lombardo, and J. Rodrigo-Comino, “GIS-based groundwater potential mapping in Shahroud plain, Iran. A comparison among statistical (bivariate and multivariate), data mining and MCDM approaches,” Science of the Total Environment, vol. 658, pp. 160–177, Mar. 2019, doi:10.1016/j.scitotenv.2018.12.115.

M. M. Mohamed and S. I. Elmahdy, “Fuzzy logic and multi-criteria methods for groundwater potentiality mapping at Al Fo’ah area, the United Arab Emirates (UAE): an integrated approach,” Geocarto Int, vol. 32, no. 10, pp. 1120–1138, Oct. 2017, doi:10.1080/10106049.2016.1195884.

A. Sabri et al., “Predictive modelling on Spatial–temporal Land Use and Land Cover changes at the Casablanca-Settat Region in Morocco,” Model Earth Syst Environ, Sep. 2024, doi: 10.1007/s40808-024-02107-y.

R. Mukhaiyar, “Geographic Information System and image classification of remote sensing synergy for land-use identification,” International Journal of GEOMATE, vol. 16, no. 53, pp. 245–251, 2019, doi: 10.21660/2019.53.08962.

M. T. Zeshan, M. R. U. Mustafa, and M. F. Baig, “Article monitoring land use changes and their future prospects using gis and ann-ca for perak river basin, malaysia,” Water (Switzerland), vol. 13, no. 16, Aug. 2021, doi: 10.3390/w13162286.

S. Zhang et al., “Land use/land cover prediction and analysis of the middle reaches of the Yangtze River under different scenarios,” Science of The Total Environment, vol. 833, p. 155238, Aug. 2022, doi: 10.1016/j.scitotenv.2022.155238.

L. Xie, H. Wang, and S. Liu, “The ecosystem service values simulation and driving force analysis based on land use/land cover: A case study in inland rivers in arid areas of the Aksu River Basin, China,” Ecol Indic, vol. 138, p. 108828, May 2022, doi:10.1016/j.ecolind.2022.108828.

K. Winkler, R. Fuchs, M. Rounsevell, and M. Herold, “Global land use changes are four times greater than previously estimated,” Nat Commun, vol. 12, no. 1, p. 2501, May 2021, doi: 10.1038/s41467-021-22702-2.

T. Wellmann et al., “Remote sensing in urban planning: Contributions towards ecologically sound policies?,” Landsc Urban Plan, vol. 204, p. 103921, Dec. 2020, doi: 10.1016/j.landurbplan.2020.103921.

A. C. G. Varquez, S. Dong, S. Hanaoka, and M. Kanda, “Evaluating future railway-induced urban growth of twelve cities using multiple SLEUTH models with open-source geospatial inputs,” Sustain Cities Soc, vol. 91, p. 104442, Apr. 2023, doi: 10.1016/j.scs.2023.104442.

Md. S. Rana and S. Sarkar, “Prediction of urban expansion by using land cover change detection approach,” Heliyon, vol. 7, no. 11, p. e08437, Nov. 2021, doi: 10.1016/j.heliyon.2021.e08437.

H. T. T. Nguyen, T. A. Pham, M. T. Doan, and P. T. X. Tran, “Land Use/Land Cover Change Prediction Using Multi-Temporal Satellite Imagery and Multi-Layer Perceptron Markov Model,” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLIV-3/W1-2020, pp. 99–105, Nov. 2020, doi: 10.5194/isprs-archives-XLIV-3-W1-2020-99-2020.

K. I. Ngoy, F. Qi, and D. J. Shebitz, “Analyzing and Predicting Land Use and Land Cover Changes in New Jersey Using Multi-Layer Perceptron–Markov Chain Model,” Earth, vol. 2, no. 4, pp. 845–870, Nov. 2021, doi: 10.3390/earth2040050.

S. Mustak, N. K. Baghmar, S. K. Singh, and P. K. Srivastava, “Multi-scenario based urban growth modeling and prediction using earth observation datasets towards urban policy improvement,” Geocarto Int, vol. 37, no. 27, pp. 18275–18303, Dec. 2022, doi:10.1080/10106049.2022.2138983.

Md. S. Mondal, N. Sharma, P. K. Garg, and M. Kappas, “Statistical independence test and validation of CA Markov land use land cover (LULC) prediction results,” The Egyptian Journal of Remote Sensing and Space Science, vol. 19, no. 2, pp. 259–272, Dec. 2016, doi:10.1016/j.ejrs.2016.08.001.

S. N. MohanRajan, A. Loganathan, and P. Manoharan, “Survey on Land Use/Land Cover (LU/LC) change analysis in remote sensing and GIS environment: Techniques and Challenges,” Environmental Science and Pollution Research, vol. 27, no. 24, pp. 29900–29926, Aug. 2020, doi: 10.1007/s11356-020-09091-7.

A. Mishra and D. S. Arya, “Assessment of land-use land-cover dynamics and urban heat island effect of Dehradun city, North India: a remote sensing approach,” Environ Dev Sustain, vol. 26, no. 9, pp. 22421–22447, Jul. 2023, doi: 10.1007/s10668-023-03558-6.

S. Mansour, E. Ghoneim, A. El-Kersh, S. Said, and S. Abdelnaby, “Spatiotemporal Monitoring of Urban Sprawl in a Coastal City Using GIS-Based Markov Chain and Artificial Neural Network (ANN),” Remote Sens (Basel), vol. 15, no. 3, p. 601, Jan. 2023, doi:10.3390/rs15030601.

C. Losiri, M. Nagai, S. Ninsawat, and R. Shrestha, “Modeling Urban Expansion in Bangkok Metropolitan Region Using Demographic–Economic Data through Cellular Automata-Markov Chain and Multi-Layer Perceptron-Markov Chain Models,” Sustainability, vol. 8, no. 7, p. 686, Jul. 2016, doi: 10.3390/su8070686.

Y. Liu, Y. Zhong, A. Ma, J. Zhao, and L. Zhang, “Cross-resolution national-scale land-cover mapping based on noisy label learning: A case study of China,” International Journal of Applied Earth Observation and Geoinformation, vol. 118, p. 103265, Apr. 2023, doi:10.1016/j.jag.2023.103265.

X. Liang, Q. Guan, K. C. Clarke, S. Liu, B. Wang, and Y. Yao, “Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China,” Comput Environ Urban Syst, vol. 85, p. 101569, Jan. 2021, doi: 10.1016/j.compenvurbsys.2020.101569.

A. F. Koko, Z. Han, Y. Wu, G. A. Abubakar, and M. Bello, “Spatiotemporal Land Use/Land Cover Mapping and Prediction Based on Hybrid Modeling Approach: A Case Study of Kano Metropolis, Nigeria (2020–2050),” Remote Sens (Basel), vol. 14, no. 23, p. 6083, Nov. 2022, doi: 10.3390/rs14236083.

R. Kruse, S. Mostaghim, C. Borgelt, C. Braune, and M. Steinbrecher, “Multi-layer Perceptrons,” in Computational Intelligence, Springer, Cham, 2022, pp. 53–124. doi: 10.1007/978-3-030-42227-1_5.

A.- Al Kafy et al., “Predicting the impacts of land use/land cover changes on seasonal urban thermal characteristics using machine learning algorithms,” Build Environ, vol. 217, p. 109066, Jun. 2022, doi: 10.1016/j.buildenv.2022.109066.

M.-J. Jun, “A comparison of a gradient boosting decision tree, random forests, and artificial neural networks to model urban land use changes: the case of the Seoul metropolitan area,” International Journal of Geographical Information Science, vol. 35, no. 11, pp. 2149–2167, Nov. 2021, doi: 10.1080/13658816.2021.1887490.

A. El Jazouli, A. Barakat, R. Khellouk, J. Rais, and M. El Baghdadi, “Remote sensing and GIS techniques for prediction of land use land cover change effects on soil erosion in the high basin of the Oum Er Rbia River (Morocco),” Remote Sens Appl, vol. 13, pp. 361–374, Jan. 2019, doi: 10.1016/j.rsase.2018.12.004.

G. Herrera-Franco, P. Escandón-Panchana, F. J. Montalván, and A. Velastegui-Montoya, “CLUE-S model based on GIS applied to management strategies of territory with oil wells—Case study: Santa Elena, Ecuador,” Geography and Sustainability, vol. 3, no. 4, pp. 366–378, Dec. 2022, doi: 10.1016/j.geosus.2022.11.001.

R. Hamad, H. Balzter, and K. Kolo, “Predicting Land Use/Land Cover Changes Using a CA-Markov Model under Two Different Scenarios,” Sustainability, vol. 10, no. 10, p. 3421, Sep. 2018, doi:10.3390/su10103421.

S. Gaur, A. Mittal, A. Bandyopadhyay, I. Holman, and R. Singh, “Spatio-temporal analysis of land use and land cover change: a systematic model inter-comparison driven by integrated modelling techniques,” Int J Remote Sens, vol. 41, no. 23, pp. 9229–9255, Dec. 2020, doi: 10.1080/01431161.2020.1815890.

E. Bielecka, “GIS Spatial Analysis Modeling for Land Use Change. A Bibliometric Analysis of the Intellectual Base and Trends,” Geosciences (Basel), vol. 10, no. 11, p. 421, Oct. 2020, doi:10.3390/geosciences10110421.

M. Asadi, A. Oshnooei-Nooshabadi, S.-S. Saleh, F. Habibnezhad, S. Sarafraz-Asbagh, and J. L. Van Genderen, “Urban Sprawl Simulation Mapping of Urmia (Iran) by Comparison of Cellular Automata–Markov Chain and Artificial Neural Network (ANN) Modeling Approach,” Sustainability, vol. 14, no. 23, p. 15625, Nov. 2022, doi:10.3390/su142315625.

A. Arora et al., “Comparative evaluation of geospatial scenario-based land change simulation models using landscape metrics,” Ecol Indic, vol. 128, p. 107810, Sep. 2021, doi: 10.1016/j.ecolind.2021.107810.

S. Shekhar and A. C. Pandey, “Delineation of groundwater potential zone in hard rock terrain of India using remote sensing, geographical information system (GIS) and analytic hierarchy process (AHP) techniques,” Geocarto Int, vol. 30, no. 4, pp. 402–421, Apr. 2015, doi:10.1080/10106049.2014.894584.

R. Mukhaiyar, “Digital Image and Remote Sensing Image as a Data for an Identification of a Quality of a Non-Point Source Pollutant in Ciliwung River, Indonesia,” International Journal of GEOMATE, vol. 12, no. 32, pp. 142–151, Apr. 2017, doi: 10.21660/2017.32.56453.