Cheating Detection for Online Examination Using Clustering Based Approach
DOI: http://dx.doi.org/10.30630/joiv.7.3-2.2327
Abstract
Keywords
Full Text:
PDFReferences
U. Vellappan, L. Lim, and S. Y. Lim, “Engaging Learning Experience: Enhancing Productivity Software Lessons with Screencast Videos,†Journal of Informatics and Web Engineering, vol. 2, no. 2, Art. no. 2, Sep. 2023, doi: 10.33093/jiwe.2023.2.2.14.
I. N. Yulita, F. A. Hariz, I. Suryana, and A. S. Prabuwono, “Educational Innovation Faced with COVID-19: Deep Learning for Online Exam Cheating Detection,†Education Sciences, vol. 13, no. 2, Art. no. 2, Feb. 2023, doi: 10.3390/educsci13020194.
D. M. Cretu and Y.-S. Ho, “The Impact of COVID-19 on Educational Research: A Bibliometric Analysis,†Sustainability, vol. 15, no. 6, Art. no. 6, Jan. 2023, doi: 10.3390/su15065219.
M. Labayen, R. Vea, J. Flórez, N. Aginako, and B. Sierra, “Online Student Authentication and Proctoring System Based on Multimodal Biometrics Technology,†IEEE Access, vol. 9, pp. 72398–72411, 2021, doi: 10.1109/ACCESS.2021.3079375.
R. Wuthisatian, “Student exam performance in different proctored environments: Evidence from an online economics course,†International Review of Economics Education, vol. 35, p. 100196, Nov. 2020, doi: 10.1016/j.iree.2020.100196.
A. W. Muzaffar, M. Tahir, M. W. Anwar, Q. Chaudry, S. R. Mir, and Y. Rasheed, “A Systematic Review of Online Exams Solutions in E-Learning: Techniques, Tools, and Global Adoption,†IEEE Access, vol. 9, pp. 32689–32712, 2021, doi: 10.1109/ACCESS.2021.3060192.
K. Butler-Henderson and J. Crawford, “A systematic review of online examinations: A pedagogical innovation for scalable authentication and integrity,†Computers & Education, vol. 159, p. 104024, Dec. 2020, doi: 10.1016/j.compedu.2020.104024.
S. M. Aslam, A. K. Jilani, J. Sultana, and L. Almutairi, “Feature Evaluation of Emerging E-Learning Systems Using Machine Learning: An Extensive Survey,†IEEE Access, vol. 9, pp. 69573–69587, 2021, doi: 10.1109/ACCESS.2021.3077663.
S. Dendir and R. S. Maxwell, “Cheating in online courses: Evidence from online proctoring,†Computers in Human Behavior Reports, vol. 2, p. 100033, Aug. 2020, doi: 10.1016/j.chbr.2020.100033.
Y. Atoum, L. Chen, A. X. Liu, S. D. H. Hsu, and X. Liu, “Automated Online Exam Proctoring,†IEEE Transactions on Multimedia, vol. 19, no. 7, pp. 1609–1624, Jul. 2017, doi: 10.1109/TMM.2017.2656064.
M. E. RodrÃguez, A.-E. Guerrero-Roldán, D. Baneres, and I. Noguera, “Students’ Perceptions of and Behaviors Toward Cheating in Online Education,†IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, vol. 16, no. 2, pp. 134–142, May 2021, doi: 10.1109/RITA.2021.3089925.
S. Mukherjee, B. Rohles, V. Distler, G. Lenzini, and V. Koenig, “The effects of privacy-non-invasive interventions on cheating prevention and user experience in unproctored online assessments: An empirical study,†Computers & Education, vol. 207, p. 104925, Dec. 2023, doi: 10.1016/j.compedu.2023.104925.
S. Kaddoura and A. Gumaei, “Towards effective and efficient online exam systems using deep learning-based cheating detection approach,†Intelligent Systems with Applications, vol. 16, p. 200153, Nov. 2022, doi: 10.1016/j.iswa.2022.200153.
R. Shafique, W. Aljedaani, F. Rustam, E. Lee, A. Mehmood, and G. S. Choi, “Role of Artificial Intelligence in Online Education: A Systematic Mapping Study,†IEEE Access, vol. 11, pp. 52570–52584, 2023, doi: 10.1109/ACCESS.2023.3278590.
M. Garg and A. Goel, “Preserving integrity in online assessment using feature engineering and machine learning,†Expert Systems with Applications, vol. 225, p. 120111, Sep. 2023, doi: 10.1016/j.eswa.2023.120111.
E. F. Okagbue et al., “A comprehensive overview of artificial intelligence and machine learning in education pedagogy: 21 Years (2000–2021) of research indexed in the scopus database,†Social Sciences & Humanities Open, vol. 8, no. 1, p. 100655, Jan. 2023, doi: 10.1016/j.ssaho.2023.100655.
A. Javed and Z. Aslam, “An Intelligent Alarm Based Visual Eye Tracking Algorithm for Cheating Free Examination System,†IJISA, vol. 5, no. 10, pp. 86–92, Sep. 2013, doi: 10.5815/ijisa.2013.10.11.
R. Bawarith, D. A. Basuhail, D. A. Fattouh, and P. D. S. Gamalel-Din, “E-exam Cheating Detection System,†International Journal of Advanced Computer Science and Applications (IJACSA), vol. 8, no. 4, Art. no. 4, 53/29 2017, doi: 10.14569/IJACSA.2017.080425.
M. Ghizlane, B. Hicham, and F. H. Reda, “A New Model of Automatic and Continuous Online Exam Monitoring,†in 2019 International Conference on Systems of Collaboration Big Data, Internet of Things & Security (SysCoBIoTS), Dec. 2019, pp. 1–5. doi: 10.1109/SysCoBIoTS48768.2019.9028027.
A. C. Ozgen, M. U. Öztürk, O. Torun, J. Yang, and M. Z. Alparslan, “Cheating Detection Pipeline for Online Interviews,†in 2021 29th Signal Processing and Communications Applications Conference (SIU), Jun. 2021, pp. 1–4. doi: 10.1109/SIU53274.2021.9477950.
L. C. O. Tiong and H. J. Lee, “E-cheating Prevention Measures: Detection of Cheating at Online Examinations Using Deep Learning Approach -- A Case Study.†arXiv, Jan. 24, 2021. doi: 10.48550/arXiv.2101.09841.
A. Jadi, “New Detection Cheating Method of Online-Exams during COVID-19 Pandemic,†International Journal of Computer Science and Network Security, vol. 21, no. 4, pp. 123–130, Apr. 2021, doi: 10.22937/IJCSNS.2021.21.4.17.
N. Dilini, A. Senaratne, T. Yasarathna, N. Warnajith, and L. Seneviratne, “Cheating Detection in Browser-based Online Exams through Eye Gaze Tracking,†in 2021 6th International Conference on Information Technology Research (ICITR), Dec. 2021, pp. 1–8. doi: 10.1109/ICITR54349.2021.9657277.
A. Barrientos, M. Cuadros, J. Alba, and Ã. S. Cruz, “Implementation of a remote system for the supervision of online exams through the use of cameras with artificial intelligence,†in 2021 IEEE Engineering International Research Conference (EIRCON), Oct. 2021, pp. 1–4. doi: 10.1109/EIRCON52903.2021.9613352.
M. Soltane and M. R. Laouar, “A Smart System to Detect Cheating in the Online Exam,†in 2021 International Conference on Information Systems and Advanced Technologies (ICISAT), Dec. 2021, pp. 1–5. doi: 10.1109/ICISAT54145.2021.9678418.
D. Steffen and A. Chaves Neto, “Ranking Model Applying Self-Organizing Maps and Factor Analysis,†IEEE Latin America Transactions, vol. 19, no. 7, pp. 1217–1224, Jul. 2021, doi: 10.1109/TLA.2021.9461851.
“Gaussian Mixture Model and Self-Organizing Map Neural-Network-Based Coverage for Target Search in Curve-Shape Area | IEEE Journals & Magazine | IEEE Xplore.†Accessed: Oct. 02, 2023. [Online]. Available: https://ieeexplore.ieee.org/document/9208685
“Bias-Corrected Intuitionistic Fuzzy C-Means With Spatial Neighborhood Information Approach for Human Brain MRI Image Segmentation | IEEE Journals & Magazine | IEEE Xplore.†Accessed: Oct. 02, 2023. [Online]. Available: https://ieeexplore.ieee.org/document/9293019
“Solar Radiation Intensity Probabilistic Forecasting Based on K-Means Time Series Clustering and Gaussian Process Regression | IEEE Journals & Magazine | IEEE Xplore.†Accessed: Oct. 02, 2023. [Online]. Available: https://ieeexplore.ieee.org/document/9422819
“Entropic Dynamic Time Warping Kernels for Co-Evolving Financial Time Series Analysis | IEEE Journals & Magazine | IEEE Xplore.†Accessed: Oct. 02, 2023. [Online]. Available: https://ieeexplore.ieee.org/document/9145837
“Dynamic Time Warping Based Adversarial Framework for Time-Series Domain | IEEE Journals & Magazine | IEEE Xplore.†Accessed: Oct. 02, 2023. [Online]. Available: https://ieeexplore.ieee.org/document/9970291