Drone Kit-Python for Autonomous Quadcopter Navigation

Ali Basrah Pulungan - Universitas Negeri Padang, West Sumatera 25171, Indonesia
Zaki Yuanda Putra - Universitas Negeri Padang, West Sumatera 25171, Indonesia
Adam Rasyid Sidiqi - Universitas Negeri Padang, West Sumatera 25171, Indonesia
Hamdani Hamdani - Universitas Negeri Padang, West Sumatera 25171, Indonesia
Kathleen E Parigalan - University of Science and Technology of Southern Philippines, Cagayan de Oro City 9000, Philippines


Citation Format:



DOI: http://dx.doi.org/10.62527/joiv.8.3.2301

Abstract


Using Python scripts over the MAVLink protocol, developers can use the open-source DroneKit Python software framework to enable autonomous drone operations. This framework provides excellent flexibility and power to facilitate automated drone control. The built quadcopter has an X configuration and uses a DJI F450 frame with some modifications. Interestingly, the drone has legs made of aluminum on both sides to help with smooth takeoffs and landings. The frame is 45 cm diagonal length and 30 cm vertical height. The drone was given an additional weight in a 15 x 18 x 12.5 cm box. The propeller used in this investigation is a 9x6 carbon-based model. The x2216 1400kV brushless motor that is being used is from Sunnysky, and it comes with an Electronic Speed Controller (ESC) with a 30A rating. A 4-cell 14.8V Lithium-Polymer (Li-Po) battery with a 7200mAh capacity powers the drone. Apart from that, the drone weighs 1573g in total. The results are obtained by self-measurement and flight measurement data (FMU). Six attempts were made, and the results showed that the second flight had the longest flight time and the highest altitude. In particular, the Flight Measurement Unit (FMU) reported that the flight lasted 81 seconds and reached an altitude of 0.93 meters. In contrast, the self-measurement data reported that the flight lasted 85 seconds and reached an altitude of 1.5 meters.


Keywords


DroneKit-Python; MavLink; Quadcopter; Unmanned Aerial Vehicle (UAV)

Full Text:

PDF

References


D. R. A. Almeida et al., “Monitoring the structure of forest restoration plantations with a drone-lidar system,” Int. J. Appl. Earth Obs. Geoinf., vol. 79, pp. 192–198, Jul. 2019, doi: 10.1016/j.jag.2019.03.014.

S. Bhatnagar, L. Gill, and B. Ghosh, “Drone Image Segmentation Using Machine and Deep Learning for Mapping Raised Bog Vegetation Communities,” Remote Sens., vol. 12, no. 16, p. 2602, Aug. 2020, doi: 10.3390/rs12162602.

B. Aydin, E. Selvi, J. Tao, and M. Starek, “Use of Fire-Extinguishing Balls for a Conceptual System of Drone-Assisted Wildfire Fighting,” Drones, vol. 3, no. 1, p. 17, Feb. 2019, doi: 10.3390/drones3010017.

L. M. Wastupranata, “UAV Waypoint Strategy for COVID-19 Medicine Delivery Based on Cheapest Link and Hamilton Circuit Algorithm,” 2023, doi: 10.36227/techrxiv.22218544.v1.

G. Y. Pardomoan and Y. I. Jenie, “Micro Aerial Vehicle as an Aircraft Inspection System based on Computer Vision,” in AIAA AVIATION 2022 Forum, Reston, Virginia: American Institute of Aeronautics and Astronautics, Jun. 2022. doi: 10.2514/6.2022-3406.

M. Rivai, R. Dikairono, and I. F. Priyanta, “Mapping Gaseous Pollutant Using Quadcopter on Autonomous Waypoint Navigation,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 10, no. 5, p. 1998, Oct. 2020, doi: 10.18517/ijaseit.10.5.6656.

W. M. Wan Mohamed, N. P. Ravindran, and P. Rajendran, “A CFD Simulation on the Performance of Slotted Propeller Design for Various Airfoil Configurations,” CFD Lett., vol. 13, no. 3, pp. 43–57, Mar. 2021, doi: 10.37934/cfdl.13.3.4357.

N. Bucki, J. Tang, and M. W. Mueller, “Design and Control of a Midair-Reconfigurable Quadcopter Using Unactuated Hinges,” 2021, doi: 10.48550/arxiv.2103.16632.

P. Parihar, P. Bhawsar, and P. Hargod, “Design & development analysis of quadcopter,” Compusoft, vol. 5, no. 6, p. 2128, 2016.

Monday Eze, Charles Okunbor, and Umoke Chukwudum, “Studies in object-oriented programming backbone implementations,” Glob. J. Eng. Technol. Adv., vol. 8, no. 3, pp. 020–031, Sep. 2021, doi: 10.30574/gjeta.2021.8.3.0119.

C. R. Harris et al., “Array programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020, doi: 10.1038/s41586-020-2649-2.

D. A. Manalu and G. Gunadi, “IMPLEMENTASI METODE DATA MINING K-MEANS CLUSTERING TERHADAP DATA PEMBAYARAN TRANSAKSI MENGGUNAKAN BAHASA PEMROGRAMAN PYTHON PADA CV DIGITAL DIMENSI,” Infotech J. Technol. Inf., vol. 8, no. 1, pp. 43–54, Jun. 2022, doi: 10.37365/jti.v8i1.131.

M. Badenhorst, C. J. Barry, C. J. Swanepoel, C. T. van Staden, J. Wissing, and J. M. Rohwer, “Workflow for Data Analysis in Experimental and Computational Systems Biology: Using Python as ‘Glue,’” Processes, vol. 7, no. 7, p. 460, Jul. 2019, doi: 10.3390/pr7070460.

S. M. A. Ade Irma Amanda, Debi Setiawan, and Liza Trisnawati, “Penerapan Algoritma Apriori Dalam Menganalisis Pola Minat Beli Konsumen Di Coffee Shop,” JEKIN - J. Tek. Inform., vol. 3, no. 1, pp. 25–32, Jul. 2023, doi: 10.58794/jekin.v3i1.483.

A. B. Pulungan, Z. Nafis, M. Anwar, H. Hastuti, H. Hamdani, and D. E. M. Myori, “Object Detection with a Webcam Using the Python Programming Language,” J. Appl. Eng. Technol. Sci., vol. 2, no. 2, pp. 103–111, May 2021, doi: 10.37385/jaets.v2i2.247.

A. B. Abadi and S. Tahcfulloh, “Digital Image Processing for Height Measurement Application Based on Python OpenCV and Regression Analysis,” JOIV Int. J. Informatics Vis., vol. 6, no. 4, p. 763, Dec. 2022, doi: 10.30630/joiv.6.4.1013.

R. Zulunov and B. N. Soliev, “Importance of Python Language in Development of Artificial Intelligence,” Al-Farg’oniy avlodlari (Descendants of Al-Farghani) , vol. 1, no. 1, pp. 7–12, 2023, [Online]. Available: https://zenodo.org/record/7614385

J. A. Ariza and S. G. Gil, “RaspyLab : A Low-Cost Remote Laboratory to Learn Programming and Physical Computing Through Python and Raspberry Pi,” IEEE Rev. Iberoam. Tecnol. del Aprendiz., vol. 17, no. 2, pp. 140–149, May 2022, doi: 10.1109/RITA.2022.3166877.

X. Lou, S. van der Lee, and S. Lloyd, “AIMBAT: A Python/Matplotlib Tool for Measuring Teleseismic Arrival Times,” Seismol. Res. Lett., vol. 84, no. 1, pp. 85–93, Jan. 2013, doi: 10.1785/0220120033.

A. Mahavarkar, R. Kadwadkar, S. Maurya, and S. Raveendran, “Underwater Object Detection using Tensorflow,” ITM Web Conf., vol. 32, p. 03037, Jul. 2020, doi: 10.1051/itmconf/20203203037.

H. M. Qays, B. A. Jumaa, and A. D. Salman, “Design and Implementation of Autonomous Quadcopter using SITL Simulator,” Iraqi J. Comput. Commun. Control Syst. Eng., no. April, pp. 1–16, 2020, doi: 10.33103/uot.ijccce.20.1.1.

A. Borghgraef, F. Ben Othmen, and M. Vandewal, “Obtaining ground truth data in C-UAS trials,” in Target and Background Signatures VIII, K. Stein and R. Schleijpen, Eds., SPIE, Nov. 2022, p. 10. doi: 10.1117/12.2635723.

P. McEnroe, S. Wang, and M. Liyanage, “A Survey on the Convergence of Edge Computing and AI for UAVs: Opportunities and Challenges,” IEEE Internet Things J., vol. 9, no. 17, pp. 15435–15459, Sep. 2022, doi: 10.1109/JIOT.2022.3176400.

F. Noor, M. A. Khan, A. Al-Zahrani, I. Ullah, and K. A. Al-Dhlan, “A Review on Communications Perspective of Flying Ad-Hoc Networks: Key Enabling Wireless Technologies, Applications, Challenges and Open Research Topics,” Drones, vol. 4, no. 4, p. 65, Sep. 2020, doi: 10.3390/drones4040065.

G. Kakamoukas, P. Sarigiannidis, and I. Moscholios, “High Level Drone Application Enabler: An Open Source Architecture,” in 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), IEEE, Jul. 2020, pp. 1–4. doi: 10.1109/CSNDSP49049.2020.9249442.

Z. Zaheer, A. Usmani, E. Khan, and M. A. Qadeer, “Aerial surveillance system using UAV,” in 2016 Thirteenth International Conference on Wireless and Optical Communications Networks (WOCN), IEEE, Jul. 2016, pp. 1–7. doi: 10.1109/WOCN.2016.7759885.

L. Feng and Q. Fangchao, “Research on the Hardware Structure Characteristics and EKF Filtering Algorithm of the Autopilot PIXHAWK,” in 2016 Sixth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC), IEEE, Jul. 2016, pp. 228–231. doi: 10.1109/IMCCC.2016.128.

N. Alnaasan, A. Jain, A. Shafi, H. Subramoni, and D. K. Panda, “OMB-Py: Python Micro-Benchmarks for Evaluating Performance of MPI Libraries on HPC Systems,” Proc. - 2022 IEEE 36th Int. Parallel Distrib. Process. Symp. Work. IPDPSW 2022, no. Ml, pp. 870–879, 2022, doi: 10.1109/IPDPSW55747.2022.00143.

A. Syahputra, A. Kusyanti, and R. A. Siregar, “Pengamanan Protokol MAVLink menggunakan Algoritme Kriptografi Grain-128,” vol. 6, no. 10, pp. 2548–964, 2022, [Online]. Available: http://j-ptiik.ub.ac.id

P. Dauni, M. D. Firdaus, R. Asfariani, M. I. N. Saputra, A. A. Hidayat, and W. B. Zulfikar, “Implementation of Haversine formula for school location tracking,” J. Phys. Conf. Ser., vol. 1402, no. 7, p. 077028, Dec. 2019, doi: 10.1088/1742-6596/1402/7/077028.

R. Agramanisti Azdy and F. Darnis, “Use of Haversine Formula in Finding Distance Between Temporary Shelter and Waste End Processing Sites,” J. Phys. Conf. Ser., vol. 1500, no. 1, p. 012104, Apr. 2020, doi: 10.1088/1742-6596/1500/1/012104.