Multi-spatial Resolution Imagery to Estimate Above-Ground Carbon Stocks in Mangrove Forests

Eva Purnamasari - Universitas Negeri Padang, Padang, 25131, Indonesia
Muhammad Kamal - Universitas Gadjah Mada, Jalan Bulaksumur, Sleman, 55281, Indonesia
Pramaditya Wicaksono - Universitas Gadjah Mada, Jalan Bulaksumur, Sleman, 55281, Indonesia
Muhammad Hidayatullah - Korea-Indonesia Marine Technology Cooperation Research Center
Bigharta Susetyo - Universitas Negeri Padang, Padang, 25131, Indonesia


Citation Format:



DOI: http://dx.doi.org/10.62527/joiv.8.3.2237

Abstract


Mangroves are a type of vegetation that can absorb carbon and have an essential role in controlling CO2 levels in the atmosphere. Mangroves can absorb carbon better than terrestrial ecosystems because of their ability to bury carbon in sediment. This research aims to compare and measure the carbon stock content above the surface of mangroves in the field using multi-spatial resolution imagery, namely, Landsat 8 OLI, Sentinel 2A, and Planetscope. Field carbon calculations were carried out using the allometric method based on mangrove species. The calculation results are then linked through regression analysis with the vegetation index Difference Vegetation Index (DVI) results. The total carbon obtained from PlanetScope imagery was 535.27 tons, Sentinel 2A imagery was 549.23 tons, and Landsat 8 OLI imagery was 533.57 tons. Among the three images used, based on Sentinel 2A statistical analysis reflects the possibility of overfitting or the best with higher r and R2 values in the calculations. However, based on SE accuracy tests, PlanetScope has better accuracy than the other two images. Apart from that, the accuracy test results using a 1:1 goodness of fit plot for each image, the distribution pattern of mangrove carbon stock estimates shows that the entire model in mapping mangrove carbon stocks is over-estimated. The overestimated results are possible because more objects around the mangrove, especially canopy density, are recorded by remote sensing sensors compared to tree diameter as input for field carbon results.

Keywords


multi-resolution spatial imagery, carbon stock, and mangroves

Full Text:

PDF

References


E. D. Candra, Hartono, and P. Wicaksono, “Above Ground Carbon Stock Estimates of Mangrove Forest Using Worldview-2 Imagery in Teluk Benoa, Bali,” IOP Conf. Ser.: Earth Environ. Sci., vol. 47, p. 012014, Nov. 2016, doi: 10.1088/1755-1315/47/1/012014.

L. Pendleton et al., “Estimating Global ‘Blue Carbon’ Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems,” PLoS ONE, vol. 7, no. 9, p. e43542, Sep. 2012, doi: 10.1371/journal.pone.0043542.

B. C. Murray, L. Pendleton, W. A. Jenkins, and S. Sifleet, “Green Payments for Blue Carbon”.

F. Adelisardou, W. Zhao, R. Chow, P. Mederly, T. Minkina, and J. S. Schou, “Spatiotemporal change detection of carbon storage and sequestration in an arid ecosystem by integrating Google Earth Engine and InVEST (the Jiroft plain, Iran),” Int. J. Environ. Sci. Technol., vol. 19, no. 7, pp. 5929–5944, Jul. 2022, doi: 10.1007/s13762-021-03676-6.

J. S. Hall et al., “Deforestation scenarios show the importance of secondary forest for meeting Panama’s carbon goals,” Landsc Ecol, vol. 37, no. 3, pp. 673–694, Mar. 2022, doi: 10.1007/s10980-021-01379-4.

P. Menéndez, I. J. Losada, S. Torres-Ortega, S. Narayan, and M. W. Beck, “The Global Flood Protection Benefits of Mangroves,” Sci Rep, vol. 10, no. 1, p. 4404, Mar. 2020, doi: 10.1038/s41598-020-61136-6.

T. A. Worthington et al., “Harnessing Big Data to Support the Conservation and Rehabilitation of Mangrove Forests Globally,” One Earth, vol. 2, no. 5, pp. 429–443, May 2020, doi: 10.1016/j.oneear.2020.04.018.

Md. H. Iqbal, “Valuing ecosystem services of Sundarbans Mangrove forest: Approach of choice experiment,” Global Ecology and Conservation, vol. 24, p. e01273, Dec. 2020, doi: 10.1016/j.gecco.2020.e01273.

A. D. Rahmandhana, M. Kamal, and P. Wicaksono, “Spectral Reflectance-Based Mangrove Species Mapping from WorldView-2 Imagery of Karimunjawa and Kemujan Island, Central Java Province, Indonesia,” Remote Sensing, vol. 14, no. 1, p. 183, Jan. 2022, doi: 10.3390/rs14010183.

V. B. Arifanti, J. B. Kauffman, D. Hadriyanto, D. Murdiyarso, and R. Diana, “Carbon dynamics and land use carbon footprints in mangrove-converted aquaculture: The case of the Mahakam Delta, Indonesia,” Forest Ecology and Management, vol. 432, pp. 17–29, Jan. 2019, doi: 10.1016/j.foreco.2018.08.047.

Faculty of Forestry, University of Sumatera Utara, Jl. Tri Dharma Ujung No. 1 Kampus USU Medan, Indonesia, 20155, M. Basyuni, L. A. P. Putri, and M. B. Murni, “Implication of Land-Use and Land-Cover Change into Carbon Dioxide Emissions in Karang Gading and Langkat Timur Wildlife Reserve, North Sumatra, Indonesia,” jtfm, vol. 21, no. 1, pp. 25–35, Apr. 2015, doi: 10.7226/jtfm.21.1.25.

J. Boone Kauffman et al., “The jumbo carbon footprint of a shrimp: carbon losses from mangrove deforestation,” Front Ecol Environ, vol. 15, no. 4, pp. 183–188, May 2017, doi: 10.1002/fee.1482.

S. D. Sasmito et al., “Mangrove blue carbon stocks and dynamics are controlled by hydrogeomorphic settings and land‐use change,” Global Change Biology, vol. 26, no. 5, pp. 3028–3039, May 2020, doi: 10.1111/gcb.15056.

P. Wirabumi, P. Wicaksono, M. Kamal, I. Ridwansyah, L. Subehi, and A. Dianto, “Spatial Distribution Analysis of Total Suspended Solid (TSS) using PlanetScope Data in Menjer Lake, Wonosobo Regency,” JAGI, vol. 4, no. 1, pp. 289–297, Apr. 2020, doi: 10.30871/jagi.v4i1.1853.

P. M. López-Serrano, J. L. Cárdenas Domínguez, J. J. Corral-Rivas, E. Jiménez, C. A. López-Sánchez, and D. J. Vega-Nieva, “Modeling of Aboveground Biomass with Landsat 8 OLI and Machine Learning in Temperate Forests,” Forests, vol. 11, no. 1, p. 11, Dec. 2019, doi: 10.3390/f11010011.

S. Pandit, S. Tsuyuki, and T. Dube, “Estimating Above-Ground Biomass in Sub-Tropical Buffer Zone Community Forests, Nepal, Using Sentinel 2 Data,” Remote Sensing, vol. 10, no. 4, p. 601, Apr. 2018, doi: 10.3390/rs10040601.

A. Jellouli, A. El Harti, Z. Adiri, E. M. Bachaoui, and A. El Ghmari, “Application of Remote Sensing Data in Lithological Discrimination of Kerdous Inlier in the Anti Atlas Belt of Morocco,” JOIV, vol. 3, no. 2–2, Aug. 2019, doi: 10.30630/joiv.3.2-2.265.

D. Utari, M. Kamal, and F. Sidik, “Above-ground biomass estimation of mangrove forest using WorldView-2 imagery in Perancak Estuary, Bali,” IOP Conf. Ser.: Earth Environ. Sci., vol. 500, no. 1, p. 012011, Jun. 2020, doi: 10.1088/1755-1315/500/1/012011.

E. Purnamasari, M. Kamal, and P. Wicaksono, “Comparison of vegetation indices for estimating above-ground mangrove carbon stocks using PlanetScope image,” Regional Studies in Marine Science, vol. 44, p. 101730, May 2021, doi: 10.1016/j.rsma.2021.101730.

B. S. Nasional, Pengukuran dan penghitungan cadangan karbon –Pengukuran lapangan untuk penaksiran cadangan karbon hutan (ground based forest carbon accounting). BSN, 2011.

A. Komiyama, J. E. Ong, and S. Poungparn, “Allometry, biomass, and productivity of mangrove forests: A review,” Aquatic Botany, vol. 89, no. 2, pp. 128–137, Aug. 2008, doi: 10.1016/j.aquabot.2007.12.006.

M. Kamal, M. F. Hidayatullah, P. Mahyatar, and S. M. Ridha, “Estimation of aboveground mangrove carbon stocks from WorldView-2 imagery based on generic and species-specific allometric equations,” Remote Sensing Applications: Society and Environment, vol. 26, p. 100748, Apr. 2022, doi: 10.1016/j.rsase.2022.100748.

M. Kamal, P. Wicaksono, D. W. Anggara, and M. Hafizt, “PENGARUH RESOLUSI SPASIAL CITRA PENGINDERAAN JAUH TERHADAP ESTIMASI LEAF AREA INDEX MANGROVE DI KEPULAUAN KARIMUNJAWA JAWA TENGAH,” in Simposium Nasional Sains Geoinformasi, Yogyakarta, Indonesia: PUSPICS Fakultas Geografi UGM, Nov. 2015, pp. 667–674.

M. Basyuni et al., “Aboveground biomass and carbon stock estimation using UAV photogrammetry in Indonesian mangroves and other competing land uses,” Ecological Informatics, vol. 77, p. 102227, Nov. 2023, doi: 10.1016/j.ecoinf.2023.102227.

H. S. J. Zald et al., “Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada,” Remote Sensing of Environment, vol. 176, pp. 188–201, Apr. 2016, doi: 10.1016/j.rse.2016.01.015.

J. Zhang, C. Lu, H. Xu, and G. Wang, “Estimating aboveground biomass of Pinus densata-dominated forests using Landsat time series and permanent sample plot data,” J. For. Res., vol. 30, no. 5, pp. 1689–1706, Oct. 2019, doi: 10.1007/s11676-018-0713-7.

S. Nunes, L. Oliveira, J. Siqueira, D. C. Morton, and C. M. Souza, “Unmasking secondary vegetation dynamics in the Brazilian Amazon,” Environ. Res. Lett., vol. 15, no. 3, p. 034057, Mar. 2020, doi: 10.1088/1748-9326/ab76db.

M. Basyuni, Y. Bimantara, N. T. K. Cuc, T. Balke, and A. G. Vovides, “Macrozoobenthic community assemblage as key indicator for mangrove restoration success in North Sumatra and Aceh, Indonesia,” Restoration Ecology, vol. 30, no. 7, p. e13614, Sep. 2022, doi: 10.1111/rec.13614.

C. Cameron, L. B. Hutley, D. A. Friess, and B. Brown, “Community Structure Dynamics and Carbon Stock Change of Rehabilitated Mangrove Forests in Sulawesi, Indonesia,” Bulletin Ecologic Soc America, vol. 100, no. 1, p. e01478, Jan. 2019, doi: 10.1002/bes2.1478.

N. H. Quang et al., “Comparisons of regression and machine learning methods for estimating mangrove above-ground biomass using multiple remote sensing data in the red River Estuaries of Vietnam,” Remote Sensing Applications: Society and Environment, vol. 26, p. 100725, Apr. 2022, doi: 10.1016/j.rsase.2022.100725.

O. Csillik, P. Kumar, and G. P. Asner, “Challenges in Estimating Tropical Forest Canopy Height from Planet Dove Imagery,” Remote Sensing, vol. 12, no. 7, p. 1160, Apr. 2020, doi: 10.3390/rs12071160.

I. S. Astuty and P. Wicaksono, “Seagrass species composition and above-ground carbon stock mapping in Parang Island using Planetscope image,” in Sixth Geoinformation Science Symposium, S. B. Wibowo, A. B. Rimba, A. A. Aziz, S. Phinn, J. T. Sri Sumantyo, H. Widyasamratri, and S. Arjasakusuma, Eds., Yogyakarta, Indonesia: SPIE, Nov. 2019, p. 42. doi: 10.1117/12.2549137.

S. D. Madundo, E. W. Mauya, and C. J. Kilawe, “Comparison of multi-source remote sensing data for estimating and mapping above-ground biomass in the West Usambara tropical montane forests,” Scientific African, vol. 21, p. e01763, Sep. 2023, doi: 10.1016/j.sciaf.2023.e01763.