Classification of Malaria Using Convolutional Neural Network Method on Microscopic Image of Blood Smear

Agus Minarno - Universitas Muhammadiyah Malang, Jl. Raya Tlogomas 246, Malang, 65144, Indonesia
Tsabita Izzah - Universitas Muhammadiyah Malang, Jl. Raya Tlogomas 246, Malang, 65144, Indonesia
Yuda Munarko - Universitas Muhammadiyah Malang, Jl. Raya Tlogomas 246, Malang, 65144, Indonesia
Setio Basuki - Universitas Muhammadiyah Malang, Jl. Raya Tlogomas 246, Malang, 65144, Indonesia


Citation Format:



DOI: http://dx.doi.org/10.62527/joiv.8.3.2154

Abstract


Malaria, a critical global health issue, can lead to severe complications and mortality if not treated promptly. The conventional diagnostic method, involving a microscopic examination of blood smears, is time-consuming and requires extensive expertise. To address these challenges, computer-assisted diagnostic methods have been explored. Among these, Convolutional Neural Networks (CNN), a deep learning technique, has shown considerable promise for image classification tasks, including the analysis of microscopic blood smear images. In this study, we employ the NIH Malaria dataset, which consists of 27,558 images, to train a CNN model. The dataset is divided into parasitized (malaria-infected) and uninfected. The CNN architecture designed for this study includes three convolutional layers and two fully connected layers. We compare the performance of this model with that of a pre-trained VGG-16 model to determine the most effective approach for malaria diagnosis. The proposed CNN model demonstrates high accuracy, achieving a value of 96.81%. Furthermore, it records a recall of 0.97, a precision of 0.97, and an F1-score of 0.97. These metrics indicate a robust performance, outperforming previous studies and highlighting the model's potential for accurate malaria diagnosis. This study underscores the potential of CNN in medical image classification and supports its implementation in clinical settings to enhance diagnostic accuracy and efficiency. The findings suggest that with further refinement and validation, such models could significantly improve the speed and reliability of malaria diagnostics, ultimately aiding in better disease management and patient outcomes.


Keywords


Malaria; Convolutional Neural Network; Blood Microscopic Image; Classification; Machine Learning

Full Text:

PDF

References


S. V. Militante, “Malaria Disease Recognition through Adaptive Deep Learning Models of Convolutional Neural Network,” ICETAS 2019 - 2019 6th IEEE International Conference on Engineering, Technologies and Applied Sciences, Dec. 2019, doi: 10.1109/ICETAS48360.2019.9117446.

A. Sai Bharadwaj Reddy and D. Sujitha Juliet, “Transfer learning with RESNET-50 for malaria cell-image classification,” Proceedings of the 2019 IEEE International Conference on Communication and Signal Processing, ICCSP 2019, pp. 945–949, Apr. 2019, doi: 10.1109/ICCSP.2019.8697909.

S. Sinha, U. Srivastava, V. Dhiman, P. S. Akhilan, and S. Mishra, “Performance assessment of Deep Learning procedures on Malaria dataset,” Journal of Robotics and Control (JRC), vol. 2, no. 1, pp. 12–18, Jan. 2021, doi: 10.18196/JRC.2145.

Vijayalakshmi A and Rajesh Kanna B, “Deep learning approach to detect malaria from microscopic images,” Multimed Tools Appl, vol. 79, no. 21–22, pp. 15297–15317, Jun. 2020, doi: 10.1007/S11042-019-7162-Y/METRICS.

M. Umer, S. Sadiq, M. Ahmad, S. Ullah, G. S. Choi, and A. Mehmood, “A novel stacked CNN for malarial parasite detection in thin blood smear images,” IEEE Access, vol. 8, pp. 93782–93792, 2020, doi: 10.1109/ACCESS.2020.2994810.

K. M. F. Fuhad, J. F. Tuba, M. R. A. Sarker, S. Momen, N. Mohammed, and T. Rahman, “Deep Learning Based Automatic Malaria Parasite Detection from Blood Smear and Its Smartphone Based Application,” Diagnostics 2020, Vol. 10, Page 329, vol. 10, no. 5, p. 329, May 2020, doi: 10.3390/DIAGNOSTICS10050329.

A. E. Minarno, B. Y. Sasongko, Y. Munarko, H. A. Nugroho, and Z. Ibrahim, “Convolutional Neural Network featuring VGG-16 Model for Glioma Classification,” JOIV : International Journal on Informatics Visualization, vol. 6, no. 3, pp. 660–666, Sep. 2022, doi: 10.30630/JOIV.6.3.1230.

S. Dey, P. Nath, S. Biswas, S. Nath, and A. Ganguly, “Malaria detection through digital microscopic imaging using Deep Greedy Network with transfer learning,” Journal of Medical Imaging, vol. 8, no. 5, Sep. 2021, doi: 10.1117/1.JMI.8.5.054502.

Y. M. Kassim et al., “Clustering-Based Dual Deep Learning Architecture for Detecting Red Blood Cells in Malaria Diagnostic Smears,” IEEE J Biomed Health Inform, vol. 25, no. 5, pp. 1735–1746, May 2021, doi: 10.1109/JBHI.2020.3034863.

S. S. Prakash, B. C. Kovoor, and K. Visakha, “Convolutional Neural Network Based Malaria Parasite Infection Detection Using Thin Microscopic Blood Smear Samples,” Proceedings of the 2nd International Conference on Inventive Research in Computing Applications, ICIRCA 2020, pp. 308–313, Jul. 2020, doi: 10.1109/ICIRCA48905.2020.9182944.

P. A. Pattanaik, M. Mittal, M. Z. Khan, and S. N. Panda, “Malaria detection using deep residual networks with mobile microscopy,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 5, pp. 1700–1705, May 2022, doi: 10.1016/J.JKSUCI.2020.07.003.

A. E. Minarno, I. Soesanti, and H. A. Nugroho, “A Convolutional Neural Network Model for Batik Image Retrieval,” 2024 IEEE 14th Symposium on Computer Applications & Industrial Electronics (ISCAIE), pp. 31–36, May 2024, doi: 10.1109/ISCAIE61308.2024.10576422.

Y. W. Lee, J. W. Choi, and E. H. Shin, “Machine learning model for predicting malaria using clinical information,” Comput Biol Med, vol. 129, p. 104151, Feb. 2021, doi: 10.1016/J.COMPBIOMED.2020.104151.

W. Deelder et al., “Using deep learning to identify recent positive selection in malaria parasite sequence data,” Malar J, vol. 20, no. 1, pp. 1–9, Dec. 2021, doi: 10.1186/S12936-021-03788-X/TABLES/3.

A. Q. M. S. Sayyed, D. Saha, A. R. Hossain, and C. Shahnaz, “Effectiveness of Convolutional and Capsule network in Malaria Parasite Detection,” 2019 IEEE International Conference on Signal Processing, Information, Communication and Systems, SPICSCON 2019, pp. 68–73, Nov. 2019, doi: 10.1109/SPICSCON48833.2019.9065074.

O. Nkiruka, R. Prasad, and O. Clement, “Prediction of malaria incidence using climate variability and machine learning,” Inform Med Unlocked, vol. 22, p. 100508, Jan. 2021, doi: 10.1016/J.IMU.2020.100508.

A. E. Minarno, M. Fadhlan, Y. Munarko, and D. R. Chandranegara, “Classification of Dermoscopic Images Using CNN-SVM,” JOIV : International Journal on Informatics Visualization, vol. 8, no. 2, pp. 606–612, May 2024, doi: 10.62527/JOIV.8.2.2153.

G. Madhu, A. W. Mohamed, S. Kautish, M. A. Shah, and I. Ali, “Intelligent diagnostic model for malaria parasite detection and classification using imperative inception-based capsule neural networks,” Scientific Reports 2023 13:1, vol. 13, no. 1, pp. 1–11, Aug. 2023, doi: 10.1038/s41598-023-40317-z.

D. Sukumarran et al., “Machine and deep learning methods in identifying malaria through microscopic blood smear: A systematic review,” Eng Appl Artif Intell, vol. 133, p. 108529, Jul. 2024, doi: 10.1016/J.ENGAPPAI.2024.108529.

S. Asif, S. U. R. Khan, X. Zheng, and M. Zhao, “MozzieNet: A deep learning approach to efficiently detect malaria parasites in blood smear images,” Int J Imaging Syst Technol, vol. 34, no. 1, p. e22953, Jan. 2024, doi: 10.1002/IMA.22953.

M. Masud et al., “Leveraging Deep Learning Techniques for Malaria Parasite Detection Using Mobile Application,” Wirel Commun Mob Comput, vol. 2020, no. 1, p. 8895429, Jan. 2020, doi: 10.1155/2020/8895429.

A. Abubakar, M. Ajuji, and I. U. Yahya, “DeepFMD: Computational Analysis for Malaria Detection in Blood-Smear Images Using Deep-Learning Features,” Applied System Innovation 2021, Vol. 4, Page 82, vol. 4, no. 4, p. 82, Oct. 2021, doi: 10.3390/ASI4040082.

N. PRATIWI, N. K. C. PRATIWI, N. IBRAHIM, Y. N. FUâ€TMADAH, and S. RIZAL, “Deteksi Parasit Plasmodium pada Citra Mikroskopis Hapusan Darah dengan Metode Deep Learning,” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 9, no. 2, p. 306, Apr. 2021, doi: 10.26760/elkomika.v9i2.306.

“Malaria Cell Images Dataset.” Accessed: Jul. 15, 2024. [Online]. Available: https://www.kaggle.com/datasets/iarunava/cell-images-for-detecting-malaria

A. Dev, M. M. Fouda, L. Kerby, and Z. Md Fadlullah, “Advancing Malaria Identification from Microscopic Blood Smears Using Hybrid Deep Learning Frameworks,” IEEE Access, vol. 12, pp. 71705–71715, 2024, doi: 10.1109/ACCESS.2024.3402442.

A. G. Taye et al., “Automated Web-Based Malaria Detection System with Machine Learning and Deep Learning Techniques,” Communications in Computer and Information Science (CCIS), Jun. 2024, Accessed: Jul. 15, 2024. [Online]. Available: https://arxiv.org/abs/2407.00120v1

M. P. N, B. T. C, L. U, P. R. KPV, V. P. B, and S. Radley, “Automated Malaria Parasite Identification and Classification Using Deep Learning Techniques,” 2024 International Conference on Science Technology Engineering and Management (ICSTEM), pp. 1–6, Apr. 2024, doi: 10.1109/ICSTEM61137.2024.10560969.

M. Mujahid et al., “Efficient deep learning-based approach for malaria detection using red blood cell smears,” Scientific Reports 2024 14:1, vol. 14, no. 1, pp. 1–16, Jun. 2024, doi: 10.1038/s41598-024-63831-0.

D. R. Loh, W. X. Yong, J. Yapeter, K. Subburaj, and R. Chandramohanadas, “A deep learning approach to the screening of malaria infection: Automated and rapid cell counting, object detection and instance segmentation using Mask R-CNN,” Computerized Medical Imaging and Graphics, vol. 88, p. 101845, Mar. 2021, doi: 10.1016/J.COMPMEDIMAG.2020.101845.

A. Rahman et al., “Improving Malaria Parasite Detection from Red Blood Cell using Deep Convolutional Neural Networks,” Jul. 2019, doi: 10.48550/arxiv.1907.10418.

A. Kumar, S. Sarkar, and C. Pradhan, “Malaria Disease Detection Using CNN Technique with SGD, RMSprop and ADAM Optimizers,” Studies in Big Data, vol. 68, pp. 211–230, 2020, doi: 10.1007/978-3-030-33966-1_11.

W. Deelder et al., “Using deep learning to identify recent positive selection in malaria parasite sequence data,” Malar J, vol. 20, no. 1, pp. 1–9, Dec. 2021, doi: 10.1186/S12936-021-03788-X/TABLES/3.

A. Rahman, H. Zunair, T. R. Reme, M. S. Rahman, and M. R. C. Mahdy, “A comparative analysis of deep learning architectures on high variation malaria parasite classification dataset,” Tissue Cell, vol. 69, p. 101473, Apr. 2021, doi: 10.1016/J.TICE.2020.101473.

A. M. Zakariya and M. F. Adak, “A Review on Computational Methods Based on Deep Learning and Transfer Learning Techniques for Malaria Detection,” 2024 10th International Conference on Automation, Robotics and Applications (ICARA), pp. 443–447, Feb. 2024, doi: 10.1109/ICARA60736.2024.10553171.

F. Yang et al., “Deep Learning for Smartphone-Based Malaria Parasite Detection in Thick Blood Smears,” IEEE J Biomed Health Inform, vol. 24, no. 5, pp. 1427–1438, May 2020, doi: 10.1109/JBHI.2019.2939121.