Classification of Dermoscopic Images Using CNN-SVM

Agus Minarno - Department of Information Technology, Universitas Muhammadiyah Malang, Jl. Raya Tlogomas 246, Malang, 65144, Indonesia
Muhammad Fadhlan - Universitas Muhammadiyah Malang, Jl. Raya Tlogomas 246, Malang, 65144, Indonesia
Yuda Munarko - Universitas Muhammadiyah Malang, Jl. Raya Tlogomas 246, Malang, 65144, Indonesia and Auckland Bioengineering Institute, University of Auckland, Auckland, 1010, New Zealand
Didih Chandranegara - Universitas Muhammadiyah Malang, Jl. Raya Tlogomas 246, Malang, 65144, Indonesia

Citation Format:



Traditional machine learning methods like GLCM and ABCD rules have long been employed for image classification tasks. However, they come with inherent limitations, primarily the need for manual feature extraction. This manual feature extraction process is time-consuming and relies on expert domain knowledge, making it challenging for non-experts to use effectively. Deep learning methods, specifically Convolutional Neural Networks (CNN), have revolutionized image classification by automating the feature extraction. CNNs can learn hierarchical features directly from the raw pixel values, eliminating the need for manual feature engineering. Despite their powerful capabilities, CNNs have limitations, mainly when working with small image datasets. They may overfit the data or struggle to generalize effectively. In light of these considerations, this study adopts a hybrid approach that leverages the strengths of both deep learning and traditional machine learning. CNNs are automatic feature extractors, allowing the model to capture meaningful image patterns. These extracted features are then fed into a Support Vector Machine (SVM) classifier, known for its efficiency and effectiveness in handling small datasets. The results of this study are encouraging, with an accuracy of 0.94 and an AUC score of 0.94. Notably, these metrics outperform Abbas' previous research by a significant margin, underscoring the effectiveness of the hybrid CNN-SVM approach. This research reinforces that SVM classifiers are well-suited for tasks involving limited image data, yielding improved classification accuracy and highlighting the potential for broader applications in image analysis.


Convolutional Neural Network; Feature Extraction; Classification; Support Vector Machine; Acral Melanoma

Full Text:



P. Basurto-Lozada et al., “Acral lentiginous melanoma: Basic facts, biological characteristics and research perspectives of an understudied disease,” Pigment cell & melanoma research, vol. 34, no. 1, pp. 59–71, Jan. 2021, doi: 10.1111/PCMR.12885.

Y. A. Chen et al., “Translational pathology, genomics and the development of systemic therapies for acral melanoma,” Seminars in Cancer Biology, vol. 61, pp. 149–157, Apr. 2020, doi: 10.1016/J.SEMCANCER.2019.10.017.

A. Kalaivani and S. Karpagavalli, “A Deep Ensemble Model for Automated Multiclass Classification Using Dermoscopy Images,” Proceedings - 6th International Conference on Computing Methodologies and Communication, ICCMC 2022, pp. 1419–1423, 2022, doi: 10.1109/ICCMC53470.2022.9753708.

X. He, Y. Wang, S. Zhao, and C. Yao, “Deep metric attention learning for skin lesion classification in dermoscopy images,” Complex and Intelligent Systems, vol. 8, no. 2, pp. 1487–1504, Apr. 2022, doi: 10.1007/S40747-021-00587-4/FIGURES/8.

Y. K. Wang et al., “A comparative study of melanocytic nevi classification with dermoscopy and high-frequency ultrasound,” Skin Research and Technology, vol. 28, no. 2, pp. 265–273, Mar. 2022, doi: 10.1111/SRT.13123.

T. Vaiyapuri, P. Balaji, S. Shridevi, H. Alaskar, and Z. Sbai, “Computational Intelligence-Based Melanoma Detection and Classification Using Dermoscopic Images,” Comput Intell Neurosci, vol. 2022, 2022, doi: 10.1155/2022/2370190.

S. Ayas, “Multiclass skin lesion classification in dermoscopic images using swin transformer model,” Neural Comput Appl, vol. 35, no. 9, pp. 6713–6722, Mar. 2023, doi: 10.1007/S00521-022-08053-Z/TABLES/7.

F. Grignaffini et al., “Machine Learning Approaches for Skin Cancer Classification from Dermoscopic Images: A Systematic Review,” Algorithms 2022, Vol. 15, Page 438, vol. 15, no. 11, p. 438, Nov. 2022, doi: 10.3390/A15110438.

B. Shetty, R. Fernandes, A. P. Rodrigues, R. Chengoden, S. Bhattacharya, and K. Lakshmanna, “Skin lesion classification of dermoscopic images using machine learning and convolutional neural network,” Scientific Reports 2022 12:1, vol. 12, no. 1, pp. 1–11, Oct. 2022, doi: 10.1038/s41598-022-22644-9.

S. Bechelli and J. Delhommelle, “Machine Learning and Deep Learning Algorithms for Skin Cancer Classification from Dermoscopic Images,” Bioengineering 2022, Vol. 9, Page 97, vol. 9, no. 3, p. 97, Feb. 2022, doi: 10.3390/BIOENGINEERING9030097.

E. Somfai et al., “Handling dataset dependence with model ensembles for skin lesion classification from dermoscopic and clinical images,” Int J Imaging Syst Technol, vol. 33, no. 2, pp. 556–571, Mar. 2023, doi: 10.1002/IMA.22827.

R. O. Ogundokun et al., “Enhancing Skin Cancer Detection and Classification in Dermoscopic Images through Concatenated MobileNetV2 and Xception Models,” Bioengineering 2023, Vol. 10, Page 979, vol. 10, no. 8, p. 979, Aug. 2023, doi: 10.3390/BIOENGINEERING10080979.

Y. Nie, P. Sommella, M. Carratù, M. O’Nils, and J. Lundgren, “A Deep CNN Transformer Hybrid Model for Skin Lesion Classification of Dermoscopic Images Using Focal Loss,” Diagnostics 2023, Vol. 13, Page 72, vol. 13, no. 1, p. 72, Dec. 2022, doi: 10.3390/DIAGNOSTICS13010072.

Y. Wang, Y. Wang, J. Cai, T. K. Lee, C. Miao, and Z. J. Wang, “SSD-KD: A self-supervised diverse knowledge distillation method for lightweight skin lesion classification using dermoscopic images,” Med Image Anal, vol. 84, p. 102693, Feb. 2023, doi: 10.1016/J.MEDIA.2022.102693.

A. C. Foahom Gouabou, R. Iguernaissi, J. L. Damoiseaux, A. Moudafi, and D. Merad, “End-to-End Decoupled Training: A Robust Deep Learning Method for Long-Tailed Classification of Dermoscopic Images for Skin Lesion Classification,” Electronics 2022, Vol. 11, Page 3275, vol. 11, no. 20, p. 3275, Oct. 2022, doi: 10.3390/ELECTRONICS11203275.

C. Yu et al., “Acral melanoma detection using a convolutional neural network for dermoscopy images,” PLOS ONE, vol. 13, no. 3, p. e0193321, Mar. 2018, doi: 10.1371/JOURNAL.PONE.0193321.

Luqman Hakim, Z. Sari, and H. Handhajani, “Klasifikasi Citra Pigmen Kanker Kulit Menggunakan Convolutional Neural Network,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, pp. 379–385, Apr. 2021, doi: 10.29207/resti.v5i2.3001.

Q. Abbas, F. Ramzan, and M. U. Ghani, “Acral melanoma detection using dermoscopic images and convolutional neural networks,” Visual Computing for Industry, Biomedicine, and Art 2021 4:1, vol. 4, no. 1, pp. 1–12, Oct. 2021, doi: 10.1186/S42492-021-00091-Z.

T. J. Brinker et al., “Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task,” European Journal of Cancer, vol. 113, pp. 47–54, May 2019, doi: 10.1016/J.EJCA.2019.04.001/ATTACHMENT/42737AA2-23BD-4409-A747-5B7505A9B62F/MMC1.ZIP.

A. Murugan, S. A. H. Nair, and K. P. S. Kumar, “Detection of Skin Cancer Using SVM, Random Forest and kNN Classifiers,” Journal of Medical Systems 2019 43:8, vol. 43, no. 8, pp. 1–9, Jul. 2019, doi: 10.1007/S10916-019-1400-8.

S. T, “Computer vision for microscopic skin cancer diagnosis using handcrafted and non-handcrafted features,” Microscopy research and technique, vol. 84, no. 6, pp. 1272–1283, Jun. 2021, doi: 10.1002/JEMT.23686.

M. A. Khan, M. Y. Javed, M. Sharif, T. Saba, and A. Rehman, “Multi-model deep neural network based features extraction and optimal selection approach for skin lesion classification,” 2019 International Conference on Computer and Information Sciences, ICCIS 2019, May 2019, doi: 10.1109/ICCISCI.2019.8716400.

J. Cervantes, F. Garcia-Lamont, L. Rodríguez-Mazahua, and A. Lopez, “A comprehensive survey on support vector machine classification: Applications, challenges and trends,” Neurocomputing, vol. 408, pp. 189–215, Sep. 2020, doi: 10.1016/J.NEUCOM.2019.10.118.

J. Gu, L. Wang, H. Wang, and S. Wang, “A novel approach to intrusion detection using SVM ensemble with feature augmentation,” Computers & Security, vol. 86, pp. 53–62, Sep. 2019, doi: 10.1016/J.COSE.2019.05.022.

M. Nawaz et al., “Melanoma localization and classification through faster region-based convolutional neural network and SVM,” Multimedia Tools and Applications 2021 80:19, vol. 80, no. 19, pp. 28953–28974, Jun. 2021, doi: 10.1007/S11042-021-11120-7.

M. W. Huang, C. W. Chen, W. C. Lin, S. W. Ke, and C. F. Tsai, “SVM and SVM Ensembles in Breast Cancer Prediction,” PLOS ONE, vol. 12, no. 1, p. e0161501, Jan. 2017, doi: 10.1371/JOURNAL.PONE.0161501.

S. Khan, H. Rahmani, S. A. A. Shah, and M. Bennamoun, A Guide to Convolutional Neural Networks for Computer Vision, vol. 8, no. 1. Morgan & Claypool Publishers LLC, 2018. doi: 10.2200/S00822ED1V01Y201712COV015.

Iffat. Zafar, Giounona. Tzanidou, Richard. Burton, Nimesh. Patel, and Leonardo. Araujo, Hands-On Convolutional Neural Networks with TensorFlow : Solve Computer Vision Problems with Modeling in TensorFlow and Python. Birmingham: Packt Publishing Ltd, 2018.

Md. R. Karim, Mohit. Sewak, and Pradeep. Pujari, Practical Convolutional Neural Networks : Implement advanced deep learning models using Python, 1st ed. Packt Publishing, 2018.

B. Santosa and A. Umam, Data Mining dan Big Data Analytics Teori dan Impelementasi Menggunakan Python & Apache Spark, 2nd ed. Penebar Media Pustaka, 2018.

Shai. Shalev-Shwartz and Shai. Ben-David, Understanding machine learning : from theory to algorithms. Cambridge University Press, 2014.