Indonesian Fake News Classification Using Transfer Learning in CNN and LSTM

Tohpatti Praha - Universitas Negeri Jakarta, Jl. Rawamangun Muka, Jakarta Timur, 13220, Indonesia
Widodo Widodo - Universitas Negeri Jakarta, Jl. Rawamangun Muka, Jakarta Timur, 13220, Indonesia
Murien Nugraheni - Universitas Negeri Jakarta, Jl. Rawamangun Muka, Jakarta Timur, 13220, Indonesia


Citation Format:



DOI: http://dx.doi.org/10.62527/joiv.8.2.2126

Abstract


Fake news spreads quickly and is challenging to stop due to the ease of accessing and sharing information online. Deep learning techniques are a method that can be used to identify fake news quickly and accurately. The types of neural networks commonly utilized in deep learning architectures include Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM), which can perform well when managing the task of classifying fake news, according to several pertinent studies. Regarding handling instances of Indonesian fake news classification, this study compares how well the CNN and LSTM models perform. However, given that Indonesian is a low-resource language with scant documentation, it is challenging to build an adequate data set. At the same time, the CNN and LSTM classification models require significant training data. We proposed a transfer learning method by combining two classification models with a pre-trained IndoBERT language model. 1340 news text data were used, including 643 actual news texts from CNN Indonesia, Liputan6, and Detik and 697 fake news texts from TurnBackHoax. As a result, the performance of the combination of the LSTM classification model with IndoBERT outperformed that of the CNN classification model with IndoBERT, which only produced an accuracy of 92.91%, down by 6%, and was able to produce an accuracy of up to 97.76%, an increase of 4.8% from before. Furthermore, the results show that the LSTM classification model outperforms the CNN classification model in capturing the representation created by IndoBERT. Additionally, these insights may serve as a basis for future research on identifying fake news in Indonesia, helping to improve methods for combatting misinformation in Indonesia.

Keywords


Fake News Classification; Indonesian Language; Transfer Learning; Convolutional Neural Networks; Long Short-Term Memory; IndoBERT

Full Text:

PDF

References


S. C. Putri and A. Irhandayaningsih, “Literasi Informasi Generasi Millennial dalam Bermedia Sosial untuk Mengatasi Penyebaran Berita Hoax Terkait Covid-19 di Kabupaten Pati,” Anuva: Jurnal Kajian Budaya, Perpustakaan, dan Informasi, vol. 5, no. 3, pp. 491–504, Dec. 2021, doi: 10.14710/anuva.5.3.491-504.

S. Widi, “Pengguna Media Sosial di Indonesia Sebanyak 167 Juta pada 2023,” DataIndonesia.id. Accessed: Jul. 09, 2023. [Online]. Available: https://dataindonesia.id/internet/detail/pengguna-media-sosial-di-indonesia-sebanyak-167-juta-pada-2023

R. K. Kaliyar, A. Goswami, and P. Narang, “FakeBERT: Fake news detection in social media with a BERT-based deep learning approach,” Multimed Tools Appl, vol. 80, no. 8, pp. 11765–11788, Mar. 2021, doi: 10.1007/s11042-020-10183-2.

E. F. Santika, “Hoaks Soal Kesehatan Paling Banyak Ditemukan hingga Juni 2023,” Databoks. Accessed: Nov. 06, 2023. [Online]. Available: https://databoks.katadata.co.id/datapublish/2023/07/21/hoaks-soal-kesehatan-paling-banyak-ditemukan-hingga-juni-2023

A. Dirgantara, “Polri: dr Lois Sebarkan Berita Hoax soal COVID-19 dan Bikin Onar,” detikNews. Accessed: Nov. 06, 2023. [Online]. Available: https://news.detik.com/berita/d-5640609/polri-dr-lois-sebarkan-berita-hoax-soal-covid-19-dan-bikin-onar

D. Damarjati, “MUI Nyatakan Hoax terkait Virus Corona Haram,” detikNews.

A. S. Wardani, “Viral Video Presiden Jokowi Pidato Pakai Bahasa Mandarin, Ternyata Hasil Editan Deepfake!,” Liputan6. Accessed: Nov. 06, 2023. [Online]. Available: https://www.liputan6.com/tekno/read/5433899/viral-video-presiden-jokowi-pidato-pakai-bahasa-mandarin-ternyata-hasil-editan-deepfake?page=3

“Komunikolog Sebut Video Hoaks Bahasa Mandarin Jokowi Timbulkan Mispresepsi,” Liputan6. Accessed: Nov. 06, 2023. [Online]. Available: https://www.liputan6.com/news/read/5433695/komunikolog-sebut-video-hoaks-bahasa-mandarin-jokowi-timbulkan-mispresepsi?page=2

H. Allcott and M. Gentzkow, “Social media and fake news in the 2016 election,” Journal of Economic Perspectives, vol. 31, no. 2. American Economic Association, pp. 211–236, Mar. 01, 2017. doi: 10.1257/jep.31.2.211.

A. C. Brisola and A. Doyle, “Critical Information Literacy as a Path to Resist ‘fake News’: Understanding Disinformation as the Root Problem,” Open Information Science, vol. 3, no. 1. Walter de Gruyter GmbH, pp. 274–286, Jan. 01, 2019. doi: 10.1515/opis-2019-0019.

“Triwulan Pertama 2023, Kominfo Identifikasi 425 Isu Hoaks,” Kominfo. Accessed: Jul. 09, 2023. [Online]. Available: https://www.kominfo.go.id/content/detail/48363/siaran-pers-no-50hmkominfo042023-tentang-triwulan-pertama-2023-kominfo-identifikasi-425-isu-hoaks/0/siaran_pers

J. Simarmata, M. Iqbal, M. Hasibuan, T. Limbong, and W. Albra, Hoaks dan Media Sosial: Saring sebelum Sharing, 1st ed. Yayasan Kita Menulis, 2019. [Online]. Available: https://www.researchgate.net/publication/336320022

L. Triyono, R. Gernowo, P. Prayitno, M. Rahaman, and T. R. Yudantoro, “Indonesian Fake News Detection Using Various Machine Learning Technique,” INTERNATIONAL JOURNAL ON INFORMATICS VISUALIZATION, vol. 7, no. 3, pp. 726–732, Sep. 2023, doi: http://dx.doi.org/10.30630/joiv.7.3.1243.

S. A. Alameri and M. Mohd, “Comparison of Fake News Detection using Machine Learning and Deep Learning Techniques,” in 2021 3rd International Cyber Resilience Conference (CRC), Langkawi Island, Malaysia: IEEE, Jan. 2021, pp. 1–6. doi: 10.1109/CRC50527.2021.9392458.

B. P. Nayoga, R. Adipradana, R. Suryadi, and D. Suhartono, “Hoax Analyzer for Indonesian News Using Deep Learning Models,” in Procedia Computer Science, Elsevier B.V., 2021, pp. 704–712. doi: 10.1016/j.procs.2021.01.059.

E. Prasetio Widhi, D. Hatta Fudholi, and S. Hidayat, “IMPLEMENTATION OF DEEP LEARNING FOR FAKE NEWS CLASSIFICATION IN BAHASA INDONESIA,” JOURNAL RESEARCH OF SOCIAL SCIENCE, ECONOMICS, AND MANAGEMENT, vol. 03, no. 02, pp. 370–381, 2023, doi: 10.59141/jrssem.v3i2.546.

J. Alghamdi, Y. Lin, and S. Luo, “Towards COVID-19 fake news detection using transformer-based models,” Knowl Based Syst, vol. 274, Aug. 2023, doi: 10.1016/j.knosys.2023.110642.

C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,” Electronic Markets, vol. 31, no. 3, pp. 685–695, Sep. 2021, doi: 10.1007/s12525-021-00475-2.

W. Yin, K. Kann, M. Yu, and H. Schütze, “Comparative Study of CNN and RNN for Natural Language Processing,” Feb. 2017, [Online]. Available: http://arxiv.org/abs/1702.01923

O. A. Montesinos López, A. Montesinos López, and J. Crossa, “Convolutional Neural Networks,” in Multivariate Statistical Machine Learning Methods for Genomic Prediction, Cham: Springer International Publishing, 2022, pp. 533–577. doi: 10.1007/978-3-030-89010-0_13.

Muhammad Ikram Kaer Sinapoy, Yuliant Sibaroni, and Sri Suryani Prasetyowati, “Comparison of LSTM and IndoBERT Method in Identifying Hoax on Twitter,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 7, no. 3, pp. 657–662, Jun. 2023, doi: 10.29207/resti.v7i3.4830.

C. Feng, M. Sun, M. Dabbaghjamanesh, Y. Liu, and J. Zhang, “Advanced machine learning applications to modern power systems,” in New Technologies for Power System Operation and Analysis, Elsevier, 2021, pp. 209–257. doi: 10.1016/B978-0-12-820168-8.00007-9.

A. F. Aji et al., “One Country, 700+ Languages: NLP Challenges for Underrepresented Languages and Dialects in Indonesia,” Mar. 2022, [Online]. Available: http://arxiv.org/abs/2203.13357

Y. K. Wiciaputra, J. C. Young, and A. Rusli, “Bilingual text classification in english and indonesian via transfer learning using XLM-RoBERTa,” International Journal of Advances in Soft Computing and its Applications, vol. 13, no. 3, pp. 72–87, 2021, doi: 10.15849/ijasca.211128.06.

L. H. Suadaa, I. Santoso, and A. T. B. Panjaitan, “Transfer Learning of Pre-trained Transformers for Covid-19 Hoax Detection in Indonesian Language,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 15, no. 3, p. 317, Jul. 2021, doi: 10.22146/ijccs.66205.

B. Zoph, D. Yuret, J. May, and K. Knight, “Transfer Learning for Low-Resource Neural Machine Translation,” Apr. 2016, [Online]. Available: http://arxiv.org/abs/1604.02201

L. Torrey and J. Shavlik, “Transfer Learning,” in Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques, vol. 2, IGI Global, 2009, pp. 242–264. Accessed: Apr. 16, 2023. [Online]. Available: https://ftp.cs.wisc.edu/machine-learning/shavlik-group/torrey.handbook09.pdf

B. Wilie et al., “IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding,” Sep. 2020, [Online]. Available: http://arxiv.org/abs/2009.05387

F. Koto, A. Rahimi, J. H. Lau, and T. Baldwin, “IndoLEM and IndoBERT: A Benchmark Dataset and Pre-trained Language Model for Indonesian NLP,” Nov. 2020, [Online]. Available: http://arxiv.org/abs/2011.00677

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” Oct. 2018, [Online]. Available: http://arxiv.org/abs/1810.04805

“Padding and truncation,” Hugging Face. Accessed: Apr. 29, 2023. [Online]. Available: https://huggingface.co/docs/transformers/pad_truncation

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. Accessed: Apr. 16, 2023. [Online]. Available: https://www.deeplearningbook.org/

J. Patterson and A. Gibson, “Convolutional Neural Networks (CNNs),” in Deep Learning: A Practitioner’s Approach, 1st ed., M. Loukides and T. McGovern, Eds., O’Reilly Media, 2017, pp. 238–273. Accessed: Apr. 16, 2023. [Online]. Available: http://csis.pace.edu/ctappert/cs855-18fall/DeepLearningPractitionersApproach.pdf

H. Pasbola, “Text Classification Using Deep learning Methods,” Delhi Technological University, Delhi, 2023. Accessed: Aug. 10, 2023. [Online]. Available: http://dspace.dtu.ac.in:8080/jspui/bitstream/repository/19882/1/HritickPasbola%20MTech.pdf

S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J. Inman, “1D convolutional neural networks and applications: A survey,” Mech Syst Signal Process, vol. 151, p. 107398, Apr. 2021, doi: 10.1016/j.ymssp.2020.107398.

J. K. F. Flambeau and T. Norbert, “Simplifying the explanation of deep neural networks with sufficient and necessary feature-sets: case of text classification,” Oct. 2020, [Online]. Available: http://arxiv.org/abs/2010.03724

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, May 2015, doi: 10.1038/nature14539.

Y. Yu, X. Si, C. Hu, and J. Zhang, “A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures,” Neural Comput, vol. 31, no. 7, pp. 1235–1270, Jul. 2019, doi: 10.1162/neco_a_01199.