Environmental Monitoring System using Wireless Multi-Node Sensors based Communication System on Volcano Observations Drones

Achmad Huda - Politeknik Elektronika Negeri Surabaya, Surabaya, Indonesia
Setiawardhana Setiawardhana - Politeknik Elektronika Negeri Surabaya, Surabaya, Indonesia
Bima Dewantara - Politeknik Elektronika Negeri Surabaya, Surabaya, Indonesia
Riyanto Sigit - Politeknik Elektronika Negeri Surabaya, Surabaya, Indonesia

Citation Format:

DOI: http://dx.doi.org/10.62527/joiv.8.2.1961


Indonesia is on the Ring of Fire and has the world's most active volcanoes. Volcanic activity has a significant effect on the landscape and on the people who live there. The difficulty of evacuating and helping victims requires hard work and sometimes even the safety of the rescue team itself. For this reason, high-tech tools are needed. Unmanned aerial vehicles (UAVs), also called drones, have become a hopeful tool for remote environmental monitoring in recent years. The system design has a monitoring platform, gateway, and sensor nodes attached to the UAV, which monitors the content of toxic gas contamination in the air. Using IoT technology, sensor data is sent wirelessly to a central monitoring station for a thorough and accurate volcanic activity study. This system is a flexible and complete way to monitor volcanic activity, learn more about it, and make it easier to respond to disasters. Tests are also done to measure system speed, including latency, and determine network service quality. The results show that data is successfully sent in real-time from the sensor nodes to the monitoring system. The average Round-Trip time for the payload transmission is 446.046226 ms. This shows how well the system works to send data from the sensors connected to the UAV to the monitoring station. The UAV has sensor nodes and a monitoring system platform. These can be used to build and optimize disaster mitigation systems.


UAV; Volcano; sensor nodes; IoT; Disaster

Full Text:



N. A. Pambudi, “Geothermal power generation in Indonesia, a country within the ring of fire: Current status, future development and policy,” Renewable and Sustainable Energy Reviews, vol. 81, pp. 2893–2901, Jan. 2018, doi: 10.1016/j.rser.2017.06.096.

A. Adi et al., IRBI Indeks Risiko Bencana Indonesia Tahun 2021. Pusat Data, Informasi dan Komunikasi Kebencanaan Badan Nasional Penanggulangan Bencana.

M. N. Malawani, F. Lavigne, C. Gomez, B. W. Mutaqin, and D. S. Hadmoko, “Review of Local and Global Impacts of Volcanic Eruptions and Disaster Management Practices: The Indonesian Example,” Geosciences, vol. 11, no. 3, p. 109, Mar. 2021, doi: 10.3390/geosciences11030109.

J. P. Terry, J. Goff, N. Winspear, V. P. Bongolan, and S. Fisher, “Tonga volcanic eruption and tsunami, January 2022: globally the most significant opportunity to observe an explosive and tsunamigenic submarine eruption since AD 1883 Krakatau,” Geosci. Lett., vol. 9, no. 1, p. 24, Dec. 2022, doi: 10.1186/s40562-022-00232-z.

A. Wardoyo, J. Noor, G. Elbers, S. Schmitz, S. Flaig, and A. Budianto, “Characterizing Volcanic Ash Elements fromthe 2015 Eruptions of Bromo and Raung Volcanoes,Indonesia,” Pol. J. Environ. Stud., vol. 29, no. 2, pp. 1899–1907, Feb. 2020, doi: 10.15244/pjoes/99101.

G. Gudmundsson, “Respiratory health effects of volcanic ash with special reference to Iceland. A review: Respiratory health effects of volcanic ash,” The Clinical Respiratory Journal, vol. 5, no. 1, pp. 2–9, Jan. 2011, doi: 10.1111/j.1752-699X.2010.00231.x.

J.-F. Smekens, A. B. Clarke, M. R. Burton, A. Harijoko, and H. E. Wibowo, “SO 2 emissions at Semeru volcano, Indonesia: Characterization and quantification of persistent and periodic explosive activity,” Journal of Volcanology and Geothermal Research, vol. 300, pp. 121–128, Jul. 2015, doi: 10.1016/j.jvolgeores.2015.01.006.

A. J. Prata and C. Bernardo, “Retrieval of volcanic SO 2 column abundance from Atmospheric Infrared Sounder data,” J. Geophys. Res., vol. 112, no. D20, p. D20204, Oct. 2007, doi: 10.1029/2006JD007955.

C. Heaviside, C. Witham, and S. Vardoulakis, “Potential health impacts from sulphur dioxide and sulphate exposure in the UK resulting from an Icelandic effusive volcanic eruption,” Science of The Total Environment, vol. 774, p. 145549, Jun. 2021, doi: 10.1016/j.scitotenv.2021.145549.

N. A. Hidayatullah et al., “Volcano multiparameter monitoring system based on Internet of Things (IoT),” Australian Journal of Electrical and Electronics Engineering, vol. 17, no. 3, pp. 228–238, Jul. 2020, doi: 10.1080/1448837X.2020.1817250.

M. I. Yamin, S. Kuswadi, and S. Sukaridhoto, “Real Performance Evaluation On MQTT and COAP Protocol in Ubiquitous Network Robot Platform (UNRPF) for Disaster Multi-robot Communication,” emitter, vol. 6, no. 2, pp. 369–385, Dec. 2018, doi: 10.24003/emitter.v6i2.305.

Z. Wei et al., “UAV-Assisted Data Collection for Internet of Things: A Survey,” IEEE Internet Things J., vol. 9, no. 17, pp. 15460–15483, Sep. 2022, doi: 10.1109/JIOT.2022.3176903.

R. I. D. Silva, J. D. C. V. Rezende, and M. J. F. Souza, “Collecting large volume data from wireless sensor network by drone,” Ad Hoc Networks, vol. 138, p. 103017, Jan. 2023, doi: 10.1016/j.adhoc.2022.103017.

A. Miptahudin, T. Suryani, and W. Wirawan, “Wireless Sensor Network Based Monitoring System: Implementation, Constraints, and Solution,” JOIV : Int. J. Inform. Visualization, vol. 6, no. 4, p. 778, Dec. 2022, doi: 10.30630/joiv.6.4.1530.

A. Onasanya, S. Lakkis, and M. Elshakankiri, “Implementing IoT/WSN based smart Saskatchewan Healthcare System,” Wireless Netw, vol. 25, no. 7, pp. 3999–4020, Oct. 2019, doi: 10.1007/s11276-018-01931-2.

K. Gulati, R. S. Kumar Boddu, D. Kapila, S. L. Bangare, N. Chandnani, and G. Saravanan, “A review paper on wireless sensor network techniques in Internet of Things (IoT),” Materials Today: Proceedings, vol. 51, pp. 161–165, 2022, doi: 10.1016/j.matpr.2021.05.067.

N. Nikhil, S. M. Shreyas, G. Vyshnavi, and S. Yadav, “Unmanned Aerial Vehicles (UAV) in Disaster Management Applications,” in 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India: IEEE, Aug. 2020, pp. 140–148. doi: 10.1109/ICSSIT48917.2020.9214241.

K. Asadi et al., “An integrated UGV-UAV system for construction site data collection,” Automation in Construction, vol. 112, p. 103068, Apr. 2020, doi: 10.1016/j.autcon.2019.103068.

Y. Ding, B. Xin, and J. Chen, “A Review of Recent Advances in Coordination Between Unmanned Aerial and Ground Vehicles,” Un. Sys., vol. 09, no. 02, pp. 97–117, Apr. 2021, doi: 10.1142/S2301385021500084.

M. A. Sanusi, B. S. B. Dewantara, Setiawardhana, and R. Sigit, “Online Terrain Classification Using Neural Network for Disaster Robot Application: Klasifikasi Medan Secara Online Menggunakan Neural Network untuk Aplikasi Robot Bencana,” ijcs, vol. 12, no. 1, Feb. 2023, doi: 10.33022/ijcs.v12i1.3132.

B. P. A. Rohman, M. B. Andra, H. F. Putra, D. H. Fandiantoro, and M. Nishimoto, “Multisensory Surveillance Drone for Survivor Detection and Geolocalization in Complex Post-Disaster Environment,” in IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan: IEEE, Jul. 2019, pp. 9368–9371. doi: 10.1109/IGARSS.2019.8899804.

D. Chen, Z. Liu, L. Wang, M. Dou, J. Chen, and H. Li, “Natural Disaster Monitoring with Wireless Sensor Networks: A Case Study of Data-intensive Applications upon Low-Cost Scalable Systems,” Mobile Netw Appl, vol. 18, no. 5, pp. 651–663, Oct. 2013, doi: 10.1007/s11036-013-0456-9.

C. A. Rokhmana and R. Andaru, “Utilizing UAV-based mapping in post disaster volcano eruption,” in 2016 6th International Annual Engineering Seminar (InAES), Yogyakarta, Indonesia: IEEE, Aug. 2016, pp. 202–205. doi: 10.1109/INAES.2016.7821934.


R. Febriyanto, S. Setiawardhana, M. N. Tamara, B. Sena Bayu Dewantara, R. Sigit, and M. A. Sanusi, “Design and Realization of UGV Robot with Combined of Geared Wheel and Walked Mechanism for Uncertain Terrain in Volcanic Observation,” in 2022 International Electronics Symposium (IES), Surabaya, Indonesia: IEEE, Aug. 2022, pp. 317–323. doi: 10.1109/IES55876.2022.9888626.

S. Salsabilah, M. N. Tamara, S. Setiawardhana, B. S. Bayu Dewantara, R. Sigit, and M. A. Sanusi, “Development and Control of an Unmanned Ground Vehicle (UGV) Robotic Arm for Volcanic Material Sampling Based on Kinematics Modelling,” in 2022 International Electronics Symposium (IES), Surabaya, Indonesia: IEEE, Aug. 2022, pp. 309–316. doi: 10.1109/IES55876.2022.9888452.

J. Burgués and S. Marco, “Environmental chemical sensing using small drones: A review,” Science of The Total Environment, vol. 748, p. 141172, Dec. 2020, doi: 10.1016/j.scitotenv.2020.141172.

H. A. Hedworth, T. Sayahi, K. E. Kelly, and T. Saad, “The effectiveness of drones in measuring particulate matter,” Journal of Aerosol Science, vol. 152, p. 105702, Feb. 2021, doi: 10.1016/j.jaerosci.2020.105702.

M. Sajid, Y. J. Yang, G. B. Kim, and K. H. Choi, “Remote monitoring of environment using multi-sensor wireless node installed on quad-copter drone,” in 2016 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), Tokyo, Japan: IEEE, Dec. 2016, pp. 213–216. doi: 10.1109/IRIS.2016.8066093.

J. Zhou, J. Yang, and L. Lu, “Research on Multi-UAV Networks in Disaster Emergency Communication,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 719, no. 1, p. 012054, Jan. 2020, doi: 10.1088/1757-899X/719/1/012054.

S. Zhang, J. Liu, and W. Sun, “Stochastic Geometric Analysis of Multiple Unmanned Aerial Vehicle-Assisted Communications Over Internet of Things,” IEEE Internet Things J., vol. 6, no. 3, pp. 5446–5460, Jun. 2019, doi: 10.1109/JIOT.2019.2902162.

G. Zhang, H. Yan, Y. Zeng, M. Cui, and Y. Liu, “Trajectory Optimization and Power Allocation for Multi-Hop UAV Relaying Communications,” IEEE Access, vol. 6, pp. 48566–48576, 2018, doi: 10.1109/ACCESS.2018.2868117.

D. Mahjabeen, M. A. Rashid, and S. B. Mohamed, “Network Quality Assesment of Wireless Communication Based on Mobility Issue,” JOIV, vol. 2, no. 4–2, p. 354, Sep. 2018, doi: 10.30630/joiv.2.4-2.178.

J. Chu et al., “Identification of gas mixtures via sensor array combining with neural networks,” Sensors and Actuators B: Chemical, vol. 329, p. 129090, Feb. 2021, doi: 10.1016/j.snb.2020.129090.