Applying Deep Learning Models to Breast Ultrasound Images for Automating Breast Cancer Diagnosis
DOI: http://dx.doi.org/10.62527/joiv.8.3-2.1912
Abstract
Keywords
Full Text:
PDFReferences
M. A. Mohammed, B. Al-Khateeb, A. N. Rashid, D. A. Ibrahim, M. K. Abd Ghani, and S. A. Mostafa, “Neural network and multi-fractal dimension features for breast cancer classification from ultrasound images,” Computers & Electrical Engineering, vol. 70, pp. 871–882, Aug. 2018, doi: 10.1016/j.compeleceng.2018.01.033.
H. Katai, T. Ishikawa, K. Akazawa al., “Five-year survival analysis of surgically resected gastric cancer cases in Japan: a retrospective analysis of more than 100,000 patients from the nationwide registry of the Japanese Gastric Cancer Association (2001–2007),” Gastric Cancer, vol. 21, no. 1, pp. 144–154, Apr. 2017, doi: 10.1007/s10120-017-0716-7.
F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA: A Cancer Journal for Clinicians, vol. 68, no. 6, pp. 394–424, Sep. 2018, doi: 10.3322/caac.21492.
M. Bharati, S., Podder, P., & Mondal, "Artificial Neural Network Based Breast Cancer Screening: A Comprehensive Review," arXiv Prepr. arXiv, vol. 2006.01767, 2020.
S. V Nallamala, S. H., Mishra, P., & Koneru, “Breast Cancer Detection using Machine Learning Way,” International Journal of Recent Technology and Engineering, vol. 8, no. 2S3, pp. 1402–1405, Aug. 2019, doi: 10.35940/ijrte.b1260.0782s319.
Y. M. Saad, A. E., Elsayed, A. R., Mahmoud, S. E., & Elkheshen, "Breast Cancer Detection Using Machine Learning.," 2020.
M. E. Paoletti, J. M. Haut, J. Plaza, and A. Plaza, “A new deep convolutional neural network for fast hyperspectral image classification,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 145, pp. 120–147, Nov. 2018, doi:10.1016/j.isprsjprs.2017.11.021.
M. H. Yap et al., “Automated Breast Ultrasound Lesions Detection Using Convolutional Neural Networks,” IEEE Journal of Biomedical and Health Informatics, vol. 22, no. 4, pp. 1218–1226, Jul. 2018, doi: 10.1109/jbhi.2017.2731873.
S. Bharati, P. Podder and M. R. H. Mondal, "Artificial neural network based breast cancer screening: A comprehensive review", Int. J. Comput. Inf. Syst. Ind. Manage. Appl., vol. 12, pp. 125-137, 2020.
S. A. Badarudin, P. M., Ghazali, R., Alahdal, A. M. A., Alduais, N. A. M., & Mostafa, “Classification of Breast Cancer Patients Using Neural Network Technique,” Journal of Soft Computing and Data Mining, vol. 02, no. 01, Apr. 2021, doi: 10.30880/jscdm.2021.02.01.002.
H. H. Razzaq et al., "Empirical Analysis of a New Immunohistochemical Breast Cancer Images Dataset", Design Engineering, pp. 21-36, 2021.
O. Ibrahim Obaid, M. Abed Mohammed, M. Khanapi Abd Ghani, S. A. Mostafa, and F. Taha AL-Dhief, “Evaluating the Performance of Machine Learning Techniques in the Classification of Wisconsin Breast Cancer,” International Journal of Engineering & Technology, vol. 7, no. 4.36, pp. 160–166, Dec. 2018, doi:10.14419/ijet.v7i4.36.23737.
T. G. Debelee, F. Schwenker, A. Ibenthal, and D. Yohannes, “Survey of deep learning in breast cancer image analysis,” Evolving Systems, vol. 11, no. 1, pp. 143–163, Aug. 2019, doi: 10.1007/s12530-019-09297-2.
Y. Ding, F. Chen, Y. Zhao, Z. Wu, C. Zhang, and D. Wu, “A Stacked Multi-Connection Simple Reducing Net for Brain Tumor Segmentation,” IEEE Access, vol. 7, pp. 104011–104024, 2019, doi:10.1109/access.2019.2926448.
R. Almajalid, J. Shan, Y. Du, and M. Zhang, “Development of a Deep-Learning-Based Method for Breast Ultrasound Image Segmentation,” 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1103–1108, Dec. 2018, doi:10.1109/icmla.2018.00179.
H. Mohsen, E.-S. A. El-Dahshan, E.-S. M. El-Horbaty, and A.-B. M. Salem, “Classification using deep learning neural networks for brain tumors,” Future Computing and Informatics Journal, vol. 3, no. 1, pp. 68–71, Jun. 2018, doi: 10.1016/j.fcij.2017.12.001.
A. Vulli, P. N. Srinivasu, M. S. K. Sashank, J. Shafi, J. Choi, and M. F. Ijaz, “Fine-Tuned DenseNet-169 for Breast Cancer Metastasis Prediction Using FastAI and 1-Cycle Policy,” Sensors, vol. 22, no. 8, p. 2988, Apr. 2022, doi: 10.3390/s22082988.
W. Vorhies, "CRISP-DM – a Standard Methodology to Ensure a Good Outcome", 2016, [online] Available: Datasciencecentral.com.
W. Al-Dhabyani, M. Gomaa, H. Khaled, and A. Fahmy, “Dataset of breast ultrasound images,” Data in Brief, vol. 28, p. 104863, Feb. 2020, doi: 10.1016/j.dib.2019.104863.
W.-J. Lin, S.-H. Lo, H.-T. Young, and C.-L. Hung, “Evaluation of Deep Learning Neural Networks for Surface Roughness Prediction Using Vibration Signal Analysis,” Applied Sciences, vol. 9, no. 7, p. 1462, Apr. 2019, doi: 10.3390/app9071462.
C. A. Hartanto and L. Rahadianti, “Single Image Dehazing Using Deep Learning,” JOIV : International Journal on Informatics Visualization, vol. 5, no. 1, pp. 76–82, Mar. 2021, doi:10.30630/joiv.5.1.431.
A. S. Ahmar and E. Boj, “Application of Neural Network Time Series (NNAR) and ARIMA to Forecast Infection Fatality Rate (IFR) of COVID-19 in Brazil,” JOIV : International Journal on Informatics Visualization, vol. 5, no. 1, pp. 8–10, Mar. 2021, doi:10.30630/joiv.5.1.372.
A. A. Abdulsahib, M. A. Mahmoud, M. A. Mohammed, H. H. Rasheed, S. A. Mostafa, and M. S. Maashi, “Comprehensive review of retinal blood vessel segmentation and classification techniques: intelligent solutions for green computing in medical images, current challenges, open issues, and knowledge gaps in fundus medical images,” Network Modeling Analysis in Health Informatics and Bioinformatics, vol. 10, no. 1, Mar. 2021, doi: 10.1007/s13721-021-00294-7.
T. Fan, G. Wang, X. Wang, Y. Li, and H. Wang, “MSN-Net: a multi-scale context nested U-Net for liver segmentation,” Signal, Image and Video Processing, vol. 15, no. 6, pp. 1089–1097, Jan. 2021, doi:10.1007/s11760-020-01835-9.