Applying Deep Learning Models to Breast Ultrasound Images for Automating Breast Cancer Diagnosis

Shihab Hamad Khaleefah - Department of Computer Science, Al Maarif University College, Anbar, Iraq
Eva Cabrini Lojungin - Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, Parit Raja, Johor, Malaysia
Salama A. Mostafa - Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, Parit Raja, Johor, Malaysia
Zirawani Baharum - Malaysian Institute of Industrial Technology, Universiti Kuala Lumpur, Persiaran Sinaran Ilmu, Johor Bahru, Malaysia
Mohammed Hasan Aldulaimi - Department of Computer Techniques Engineering, College of Engineering, Al-Mustaqbal University, Hillah, Babylon, Iraq
Taher M. Ghazal - College of Arts & Science, Applied Science University, Manama, Kingdom of Bahrain
Salam Omar Alo - Department of Artificial Intelligence, College of Engineering, Alnoor University, Nineveh, Iraq
Rahmat Hidayat - Department of Information Technology, Politeknik Negeri Padang, Sumatera Barat, Indonesia


Citation Format:



DOI: http://dx.doi.org/10.62527/joiv.8.3-2.1912

Abstract


Breast cancer is a result of uncontrolled human cell division. The vast growth of breast cancer patients has been an issue worldwide. Most of the patients are women, but breast cancer also affects men with a much lesser percentage. Breast cancer might lead to death for those who are suffering from it. Numerous types of research have been done to make an early diagnosis of breast cancer. It has been proven that the tumor can be detected by using an ultrasound image. Artificial Intelligence techniques have been used to detect breast cancer fundamentally. This paper studies the effectiveness of deep learning (DL) techniques in automating breast cancer diagnosis. Subsequently, the paper evaluates the diagnosis performance of three DL models utilizing the criteria of accuracy, recall, precision, and f1-score. The Densenet-169, U-Net, and ConvNet DL models are selected based on the examination of the related work. The DL diagnosis process involves identifying two types of breast cancer tumors: benign and malignant. The evaluation outcomes of the DL models show that the most effective model for diagnosing breast cancer among the three is the ConvNet, which achieves an accuracy of 91%, a recall of 83%, a precision of 85%, and an F1-score of 83%.

Keywords


Breast cancer; malignant, benign; ultrasound images; convolutional neural network; Densenet-169; ConvNet; U-Net

Full Text:

PDF

References


M. A. Mohammed, B. Al-Khateeb, A. N. Rashid, D. A. Ibrahim, M. K. Abd Ghani, and S. A. Mostafa, “Neural network and multi-fractal dimension features for breast cancer classification from ultrasound images,” Computers & Electrical Engineering, vol. 70, pp. 871–882, Aug. 2018, doi: 10.1016/j.compeleceng.2018.01.033.

H. Katai, T. Ishikawa, K. Akazawa al., “Five-year survival analysis of surgically resected gastric cancer cases in Japan: a retrospective analysis of more than 100,000 patients from the nationwide registry of the Japanese Gastric Cancer Association (2001–2007),” Gastric Cancer, vol. 21, no. 1, pp. 144–154, Apr. 2017, doi: 10.1007/s10120-017-0716-7.

F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA: A Cancer Journal for Clinicians, vol. 68, no. 6, pp. 394–424, Sep. 2018, doi: 10.3322/caac.21492.

M. Bharati, S., Podder, P., & Mondal, "Artificial Neural Network Based Breast Cancer Screening: A Comprehensive Review," arXiv Prepr. arXiv, vol. 2006.01767, 2020.

S. V Nallamala, S. H., Mishra, P., & Koneru, “Breast Cancer Detection using Machine Learning Way,” International Journal of Recent Technology and Engineering, vol. 8, no. 2S3, pp. 1402–1405, Aug. 2019, doi: 10.35940/ijrte.b1260.0782s319.

Y. M. Saad, A. E., Elsayed, A. R., Mahmoud, S. E., & Elkheshen, "Breast Cancer Detection Using Machine Learning.," 2020.

M. E. Paoletti, J. M. Haut, J. Plaza, and A. Plaza, “A new deep convolutional neural network for fast hyperspectral image classification,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 145, pp. 120–147, Nov. 2018, doi:10.1016/j.isprsjprs.2017.11.021.

M. H. Yap et al., “Automated Breast Ultrasound Lesions Detection Using Convolutional Neural Networks,” IEEE Journal of Biomedical and Health Informatics, vol. 22, no. 4, pp. 1218–1226, Jul. 2018, doi: 10.1109/jbhi.2017.2731873.

S. Bharati, P. Podder and M. R. H. Mondal, "Artificial neural network based breast cancer screening: A comprehensive review", Int. J. Comput. Inf. Syst. Ind. Manage. Appl., vol. 12, pp. 125-137, 2020.

S. A. Badarudin, P. M., Ghazali, R., Alahdal, A. M. A., Alduais, N. A. M., & Mostafa, “Classification of Breast Cancer Patients Using Neural Network Technique,” Journal of Soft Computing and Data Mining, vol. 02, no. 01, Apr. 2021, doi: 10.30880/jscdm.2021.02.01.002.

H. H. Razzaq et al., "Empirical Analysis of a New Immunohistochemical Breast Cancer Images Dataset", Design Engineering, pp. 21-36, 2021.

O. Ibrahim Obaid, M. Abed Mohammed, M. Khanapi Abd Ghani, S. A. Mostafa, and F. Taha AL-Dhief, “Evaluating the Performance of Machine Learning Techniques in the Classification of Wisconsin Breast Cancer,” International Journal of Engineering & Technology, vol. 7, no. 4.36, pp. 160–166, Dec. 2018, doi:10.14419/ijet.v7i4.36.23737.

T. G. Debelee, F. Schwenker, A. Ibenthal, and D. Yohannes, “Survey of deep learning in breast cancer image analysis,” Evolving Systems, vol. 11, no. 1, pp. 143–163, Aug. 2019, doi: 10.1007/s12530-019-09297-2.

Y. Ding, F. Chen, Y. Zhao, Z. Wu, C. Zhang, and D. Wu, “A Stacked Multi-Connection Simple Reducing Net for Brain Tumor Segmentation,” IEEE Access, vol. 7, pp. 104011–104024, 2019, doi:10.1109/access.2019.2926448.

R. Almajalid, J. Shan, Y. Du, and M. Zhang, “Development of a Deep-Learning-Based Method for Breast Ultrasound Image Segmentation,” 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1103–1108, Dec. 2018, doi:10.1109/icmla.2018.00179.

H. Mohsen, E.-S. A. El-Dahshan, E.-S. M. El-Horbaty, and A.-B. M. Salem, “Classification using deep learning neural networks for brain tumors,” Future Computing and Informatics Journal, vol. 3, no. 1, pp. 68–71, Jun. 2018, doi: 10.1016/j.fcij.2017.12.001.

A. Vulli, P. N. Srinivasu, M. S. K. Sashank, J. Shafi, J. Choi, and M. F. Ijaz, “Fine-Tuned DenseNet-169 for Breast Cancer Metastasis Prediction Using FastAI and 1-Cycle Policy,” Sensors, vol. 22, no. 8, p. 2988, Apr. 2022, doi: 10.3390/s22082988.

W. Vorhies, "CRISP-DM – a Standard Methodology to Ensure a Good Outcome", 2016, [online] Available: Datasciencecentral.com.

W. Al-Dhabyani, M. Gomaa, H. Khaled, and A. Fahmy, “Dataset of breast ultrasound images,” Data in Brief, vol. 28, p. 104863, Feb. 2020, doi: 10.1016/j.dib.2019.104863.

W.-J. Lin, S.-H. Lo, H.-T. Young, and C.-L. Hung, “Evaluation of Deep Learning Neural Networks for Surface Roughness Prediction Using Vibration Signal Analysis,” Applied Sciences, vol. 9, no. 7, p. 1462, Apr. 2019, doi: 10.3390/app9071462.

C. A. Hartanto and L. Rahadianti, “Single Image Dehazing Using Deep Learning,” JOIV : International Journal on Informatics Visualization, vol. 5, no. 1, pp. 76–82, Mar. 2021, doi:10.30630/joiv.5.1.431.

A. S. Ahmar and E. Boj, “Application of Neural Network Time Series (NNAR) and ARIMA to Forecast Infection Fatality Rate (IFR) of COVID-19 in Brazil,” JOIV : International Journal on Informatics Visualization, vol. 5, no. 1, pp. 8–10, Mar. 2021, doi:10.30630/joiv.5.1.372.

A. A. Abdulsahib, M. A. Mahmoud, M. A. Mohammed, H. H. Rasheed, S. A. Mostafa, and M. S. Maashi, “Comprehensive review of retinal blood vessel segmentation and classification techniques: intelligent solutions for green computing in medical images, current challenges, open issues, and knowledge gaps in fundus medical images,” Network Modeling Analysis in Health Informatics and Bioinformatics, vol. 10, no. 1, Mar. 2021, doi: 10.1007/s13721-021-00294-7.

T. Fan, G. Wang, X. Wang, Y. Li, and H. Wang, “MSN-Net: a multi-scale context nested U-Net for liver segmentation,” Signal, Image and Video Processing, vol. 15, no. 6, pp. 1089–1097, Jan. 2021, doi:10.1007/s11760-020-01835-9.