Mining Opinions on a Prominent Health Insurance Provider from Social Media Microblog: Affective Model and Contextual Analysis Approach

Ihda Rasyada - Politeknik Elektronika Negeri Surabaya, Surabaya, Indonesia
Ali Barakbah - Politeknik Elektronika Negeri Surabaya, Surabaya, Indonesia
Elizabeth Amalo - Politeknik Elektronika Negeri Surabaya, Surabaya, Indonesia


Citation Format:



DOI: http://dx.doi.org/10.30630/joiv.7.2.1771

Abstract


Social media plays a significant role in enhancing communication among organizations, communities, and individuals. Besides being a mode of communication, the data generated from these interactions can also be leveraged to assess the performance of an institution or organization. People may evaluate public companies based on the opinions of their users. However, user-supplied information is brief and written in natural language. In addition to being brief, the process of sending messages or engaging in other social media interactions contains a great deal of context information. This multiplicity of context can be utilized to conduct a more in-depth analysis of user opinion. This study presents a new approach to opinion mining for social media microblogging data by applying an affective model and contextual analyses. The affective model is applied for sentiment analysis to measure the degree of each adjective from user opinion by evaluating adjectives according to their varying levels of pleasure and arousal. The contextual analysis in this paper is modeled based on topic, user, adjective, and personal characteristics. The contextual analysis has four main features: (1) Temporal keyword sentiment context, (2) Temporal user sentiment context, (3) User impression context, and (4) Temporal user character context. Our affective model outperformed 75.6% the accuracy and 74.98% of F1-score, rather than SVM. In the experiment, the contextual analysis performed graph visualization of output results for each query feature for future development. Feature one to four successfully processes the query to produce a visualization graph.

Keywords


Affective model sentiment analysis; health context analysis; health opinion mining

Full Text:

PDF

References


F. Wu, Y. Huang, and Y. Song, “Structured microblog sentiment classification via social context regularization,†Neurocomputing, vol. 175, pp. 599–609, Jan. 2016, doi: 10.1016/j.neucom.2015.10.101.

S. Kemp, “Digital 2020: Indonesia,†Indonesia, Feb. 18, 2020. [Online]. Available: https://datareportal.com/reports/digital-2020-indonesia, Accessed on: Dec 01, 2021

K. Catur Bagus Wicaksono, “Mengukur Efektivitas Social Media Bagi Perusahaan,†Binus Business Review, vol. 4, no. 1, pp. 551–564, May 2013, doi: 10.21512/bbr.v4i1.1419.

M. I. Mahdi, Jakarta, Indonesia. [Online]. Available: https://dataindonesia.id, Accessed on: May 11 2022

J. A. Russell, “A circumplex model of affect,†J Pers Soc Psychol, vol. 39, no. 6, pp. 1161–1178, Dec. 1980, doi: 10.1037/h0077714.

A. Kumar and G. Garg, “Systematic literature review on context-based sentiment analysis in social multimedia,†Multimed Tools Appl, vol. 79, no. 21–22, pp. 15349–15380, Jun. 2020, doi: 10.1007/s11042-019-7346-5.

D. Naskar, S. R. Singh, D. Kumar, S. Nandi, and E. O. de la Rivaherrera, “Emotion Dynamics of Public Opinions on Twitter,†ACM Trans Inf Syst, vol. 38, no. 2, pp. 1–24, Apr. 2020, doi: 10.1145/3379340.

A. T. Kabakus and R. Kara, “TwitterSentiDetector: a domain-independent Twitter sentiment analyser,†INFOR: Information Systems and Operational Research, vol. 56, no. 2, pp. 137–162, Apr. 2018, doi: 10.1080/03155986.2017.1340797.

W. He, Z. Zhang, and V. Akula, “Comparing consumer-produced product reviews across multiple websites with sentiment classification,†Journal of Organizational Computing and Electronic Commerce, vol. 28, no. 2, pp. 142–156, Apr. 2018, doi: 10.1080/10919392.2018.1444350.

M. T. F. Al Islami, A. R. Barakbah and A. Helen, “Ekstrak isu maskapai penerbangan pada media sosial dengan computational linguistics,†Politeknik Elektronika Negeri Suarabaya, Surabaya, 2019.

M. T. F. Al Islami, A. R. Barakbah, and T. Harsono, “Social Media Engineering for Issues Feature Extraction using Categorization Knowledge Modelling and Rule-based Sentiment Analysis,†JOIV : International Journal on Informatics Visualization, vol. 5, no. 1, Mar. 2021, doi: 10.30630/joiv.5.1.397.

B. J. M. Putra, A. Helen, and A. R. Barakbah, “Rule-based Sentiment Degree Measurement of Opinion Mining of Community Participatory in the Government of Surabaya,†EMITTER International Journal of Engineering Technology, vol. 6, no. 2, pp. 200–216, Dec. 2018, doi: 10.24003/emitter.v6i2.275.

E. Çano and M. Morisio, “MoodyLyrics,†in Proceedings of the 2017 International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence, New York, NY, USA: ACM, Mar. 2017, pp. 118–124. doi: 10.1145/3059336.3059340.

D. Naskar, S. Mokaddem, M. Rebollo, and E. Onaindia, “Sentiment Analysis in Social Networks through Topic Modeling.â€

K. Hulliyah, H. T. Sukmana, N. S. A. Bakar, and A. R. Ismail, “Indonesian Affective Word Resources Construction in Valence and Arousal Dimension for Sentiment Analysis,†in 2018 6th International Conference on Cyber and IT Service Management (CITSM), IEEE, Aug. 2018, pp. 1–5. doi: 10.1109/CITSM.2018.8674370.

A. Kumar and G. Garg, “The Multifaceted Concept of Context in Sentiment Analysis,†2020, pp. 413–421. doi: 10.1007/978-981-15-1451-7_44.

R. Liu and L. Jin, “Sentiment analysis method based on the focus sentence and context for Chinese comment text,†in Proceedings of 2nd International Conference on Information Technology and Electronic Commerce, IEEE, Dec. 2014, pp. 267–270. doi: 10.1109/ICITEC.2014.7105616.

S. Abudalfa and M. Ahmed, “Open Domain Context-Based Targeted Sentiment Analysis System,†in 2019 IEEE 7th Palestinian International Conference on Electrical and Computer Engineering (PICECE), IEEE, Mar. 2019, pp. 1–5. doi: 10.1109/PICECE.2019.8747187.

A. Vanzo, D. Croce, and R. Basili, “A context-based model for Sentiment Analysis in Twitter.†[Online]. Available: http://expandedramblings.com/

A. A. Jalal, “Text Mining: Design of Interactive Search Engine Based Regular Expressions of Online Automobile Advertisements,†International Journal of Engineering Pedagogy (iJEP), vol. 10, no. 3, p. 35, May 2020, doi: 10.3991/ijep.v10i3.12419.

B. Liu, “Sentiment Analysis and Opinion Mining,†Synthesis Lectures on Human Language Technologies, vol. 5, no. 1, pp. 1–167, May 2012, doi: 10.2200/S00416ED1V01Y201204HLT016.

I. Rasyada, Y. Setiowati, A. Barakbah, and M. T. Fiddin Al Islami, “Sentiment Analysis of BPJS Kesehatan’s Services Based on Affective Models,†in 2020 International Electronics Symposium (IES), IEEE, Sep. 2020, pp. 549–556. doi: 10.1109/IES50839.2020.9231940.

L. Feldman Barrett and J. A. Russell, “Independence and bipolarity in the structure of current affect.,†J Pers Soc Psychol, vol. 74, no. 4, pp. 967–984, Apr. 1998, doi: 10.1037/0022-3514.74.4.967.

S. Wojowasito aand T. Wasito, Kamus Lengkap : Inggeris - Indonesia ; Indonesia - Inggeris dengan Ejaan Yang Disempurnakan. Jakarta: Hasta, 2007.

A. Hume, L. Cernuzzi, and J. L. Zarza, “Analysis of the Big-Five personality traits in the Chatbot ‘UC-Paraguay,’†2022. [Online]. Available: https://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.aspx

V. Balakrishnan, S. Khan, T. Fernandez, and H. R. Arabnia, “Cyberbullying detection on twitter using Big Five and Dark Triad features,†Pers Individ Dif, vol. 141, pp. 252–257, Apr. 2019, doi: 10.1016/j.paid.2019.01.024.

K. Kircaburun, S. Alhabash, Ş. B. Tosuntaş, and M. D. Griffiths, “Uses and Gratifications of Problematic Social Media Use Among University Students: a Simultaneous Examination of the Big Five of Personality Traits, Social Media Platforms, and Social Media Use Motives,†Int J Ment Health Addict, vol. 18, no. 3, pp. 525–547, Jun. 2020, doi: 10.1007/s11469-018-9940-6.

S. M. Mohammad and P. D. Turney, “Crowdsourcing A Word-Emotion Association Lexicon,†Comput Intell, vol. 29, no. 3, pp. 436–465, Aug. 2013, doi: 10.1111/j.1467-8640.2012.00460.x.

W. Maharani and V. Effendy, “Big five personality prediction based in Indonesian tweets using machine learning methods,†International Journal of Electrical and Computer Engineering, vol. 12, no. 2, pp. 1973–1981, Apr. 2022, doi: 10.11591/ijece.v12i2.pp1973-1981.

K. Faiqoh, A R. Brakbah and A. Helen, “Klasifikasi kepribadian user menggunakan multi label classification,†Politeknik elektronika negeri Suarabaya, Surabaya, 2017.

D. Chicco and G. Jurman, “The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation,†BMC Genomics, vol. 21, no. 1, p. 6, Dec. 2020, doi: 10.1186/s12864-019-6413-7.