Text-Based Content Analysis on Social Media Using Topic Modelling to Support Digital Marketing
DOI: http://dx.doi.org/10.62527/joiv.8.1.1636
Abstract
Keywords
Full Text:
PDFReferences
Napoleoncat, “Instagram users in Indonesia,” https://napoleoncat.com/stats/instagram-users-in-indonesia/2021/08/, Aug. 2021.
Instagram, “What’s trending – info-social: Creativity of the Movement,” https://business.instagram.com/blog/trends-info-social-posts, Dec. 21, 2020.
Y. Li and Y. Xie, “Is a Picture Worth a Thousand Words? An Empirical Study of Image Content and Social Media Engagement,” Journal of Marketing Research, vol. 57, no. 1, pp. 1–19, Feb. 2020, doi: 10.1177/0022243719881113.
R. Rietveld, W. Van Dolen, M. Mazloom, and M. Worring, “What you Feel, Is what you like Influence of Message Appeals on Customer Engagement on Instagram,” Journal of Interactive Marketing, vol. 49, no. 1, pp. 20–53, Feb. 2020, doi: 10.1016/j.intmar.2019.06.003.
A. M. Rafi, S. Rana, R. Kaur, Q. M. J. Wu, and P. Moradian Zadeh, “Understanding Global Reaction to the Recent Outbreaks of COVID-19: Insights from Instagram Data Analysis,” in 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE, Oct. 2020, pp. 3413–3420. doi: 10.1109/SMC42975.2020.9283376.
L. D. Hollebeek and K. Macky, “Digital Content Marketing’s Role in Fostering Consumer Engagement, Trust, and Value: Framework, Fundamental Propositions, and Implications,” Journal of Interactive Marketing, vol. 45, pp. 27–41, Feb. 2019, doi: 10.1016/j.intmar.2018.07.003.
Y. A. Argyris, Z. Wang, Y. Kim, and Z. Yin, “The effects of visual congruence on increasing consumers’ brand engagement: An empirical investigation of influencer marketing on instagram using deep-learning algorithms for automatic image classification,” Comput Human Behav, vol. 112, p. 106443, Nov. 2020, doi: 10.1016/j.chb.2020.106443.
S. Acar, M. Neumayer, and C. Burnett, “Social Media Use and Creativity: Exploring the Influences on Ideational Behavior and Creative Activity,” J Creat Behav, vol. 55, no. 1, pp. 39–52, Mar. 2021, doi: 10.1002/jocb.432.
S. Ozcan, M. Suloglu, C. O. Sakar, and S. Chatufale, “Social media mining for ideation: Identification of sustainable solutions and opinions,” Technovation, vol. 107, p. 102322, Sep. 2021, doi: 10.1016/j.technovation.2021.102322.
D. Chaffey, “Recommended tools and techniques to support content ideation,” https://www.davechaffey.com/digital-marketing-glossary/content-ideation/, 2020.
S. S. Madila, M. A. Dida, and S. Kaijage, “Tourism SME’s Adoption of Social Media Analytics Tools and Technology,” African Journal of Hospitality, Tourism and Leisure, no. 11(1)2022, pp. 239–247, Feb. 2022, doi: 10.46222/ajhtl.19770720.223.
Y. Wang, M. Rod, Q. Deng, and S. Ji, “Exploiting business networks in the age of social media: the use and integration of social media analytics in B2B marketing,” Journal of Business & Industrial Marketing, vol. 36, no. 12, pp. 2139–2149, Nov. 2021, doi: 10.1108/JBIM-05-2019-0173.
P. Ducange, M. Fazzolari, M. Petrocchi, and M. Vecchio, “An effective Decision Support System for social media listening based on cross-source sentiment analysis models,” Eng Appl Artif Intell, vol. 78, pp. 71–85, Feb. 2019, doi: 10.1016/j.engappai.2018.10.014.
M. T. Ballestar, M. Cuerdo-Mir, and M. T. Freire-Rubio, “The Concept of Sustainability on Social Media: A Social Listening Approach,” Sustainability, vol. 12, no. 5, p. 2122, Mar. 2020, doi: 10.3390/su12052122.
W. Pearce et al., “Visual cross-platform analysis: digital methods to research social media images,” Inf Commun Soc, vol. 23, no. 2, pp. 161–180, Jan. 2020, doi: 10.1080/1369118X.2018.1486871.
D. Akinbade, A. O. Ogunde, M. O. Odim, and B. O. Oguntunde, “An Adaptive Thresholding Algorithm-Based Optical Character Recognition System for Information Extraction in Complex Images,” Journal of Computer Science, vol. 16, no. 6, pp. 784–801, Jun. 2020, doi: 10.3844/jcssp.2020.784.801.
J. Park, E. Lee, Y. Kim, I. Kang, H. Il Koo, and N. I. Cho, “Multi-Lingual Optical Character Recognition System Using the Reinforcement Learning of Character Segmenter,” IEEE Access, vol. 8, pp. 174437–174448, 2020, doi: 10.1109/ACCESS.2020.3025769.
W. Suteddy, D. A. R. Agustini, A. Adiwilaga, and D. A. Atmanto, “End-To-End Evaluation of Deep Learning Architectures for Off-Line Handwriting Writer Identification: A Comparative Study,” JOIV : International Journal on Informatics Visualization, vol. 7, no. 1, p. 178, Feb. 2023, doi: 10.30630/joiv.7.1.1293.
Á. MacDermott, M. Motylinski, F. Iqbal, K. Stamp, M. Hussain, and A. Marrington, “Using deep learning to detect social media ‘trolls,’” Forensic Science International: Digital Investigation, vol. 43, p. 301446, Sep. 2022, doi: 10.1016/j.fsidi.2022.301446.
Hubert, P. Phoenix, R. Sudaryono, and D. Suhartono, “Classifying Promotion Images Using Optical Character Recognition and Naïve Bayes Classifier,” Procedia Comput Sci, vol. 179, pp. 498–506, 2021, doi: 10.1016/j.procs.2021.01.033.
B. Jeong, J. Yoon, and J.-M. Lee, “Social media mining for product planning: A product opportunity mining approach based on topic modeling and sentiment analysis,” Int J Inf Manage, vol. 48, pp. 280–290, Oct. 2019, doi: 10.1016/j.ijinfomgt.2017.09.009.
N. Hu, T. Zhang, B. Gao, and I. Bose, “What do hotel customers complain about? Text analysis using structural topic model,” Tour Manag, vol. 72, pp. 417–426, Jun. 2019, doi: 10.1016/j.tourman.2019.01.002.
M. Reisenbichler and T. Reutterer, “Topic modeling in marketing: recent advances and research opportunities,” Journal of Business Economics, vol. 89, no. 3, pp. 327–356, Apr. 2019, doi: 10.1007/s11573-018-0915-7.
C. Thorat, A. Bhat, P. Sawant, I. Bartakke, and S. Shirsath, “A Detailed Review on Text Extraction Using Optical Character Recognition,” 2022, pp. 719–728. doi: 10.1007/978-981-16-5655-2_69.
J. Memon, M. Sami, R. A. Khan, and M. Uddin, “Handwritten Optical Character Recognition (OCR): A Comprehensive Systematic Literature Review (SLR),” IEEE Access, vol. 8, pp. 142642–142668, 2020, doi: 10.1109/ACCESS.2020.3012542.
M. Zulqarnain, R. Ghazali, M. G. Ghouse, and M. F. Mushtaq, “Efficient processing of GRU based on word embedding for text classification,” JOIV : International Journal on Informatics Visualization, vol. 3, no. 4, Nov. 2019, doi: 10.30630/joiv.3.4.289.
U. Salimah, V. Maharani, and R. Nursyanti, “Automatic License Plate Recognition Using Optical Character Recognition,” IOP Conf Ser Mater Sci Eng, vol. 1115, no. 1, p. 012023, Mar. 2021, doi: 10.1088/1757-899X/1115/1/012023.
J. R. Saura, D. Palacios-Marqués, and D. Ribeiro-Soriano, “Exploring the boundaries of open innovation: Evidence from social media mining,” Technovation, vol. 119, p. 102447, Jan. 2023, doi: 10.1016/j.technovation.2021.102447.
A. Geissinger, C. Laurell, C. Öberg, and C. Sandström, “Social media analytics for innovation management research: A systematic literature review and future research agenda,” Technovation, vol. 123, p. 102712, May 2023, doi: 10.1016/j.technovation.2023.102712.
K. R. Fitzpatrick and P. L. Weissman, “Public relations in the age of data: corporate perspectives on social media analytics (SMA),” Journal of Communication Management, vol. 25, no. 4, pp. 401–416, Nov. 2021, doi: 10.1108/JCOM-09-2020-0092.
J. Choi, J. Yoon, J. Chung, B.-Y. Coh, and J.-M. Lee, “Social media analytics and business intelligence research: A systematic review,” Inf Process Manag, vol. 57, no. 6, p. 102279, Nov. 2020, doi: 10.1016/j.ipm.2020.102279.
H. Shahbaznezhad, R. Dolan, and M. Rashidirad, “The Role of Social Media Content Format and Platform in Users’ Engagement Behavior,” Journal of Interactive Marketing, vol. 53, pp. 47–65, Feb. 2021, doi: 10.1016/j.intmar.2020.05.001.
Instagram, “View Account Insights on Instagram,” https://help.instagram.com/1533933820244654, 2023.
sproutsocial, “Social Media Analytics,” https://sproutsocial.com/features/social-media-analytics/, 2023.
Brandwatch, “Brandwatch,” https://www.brandwatch.com/, 2023.
U. Ruhi, “Social Media Analytics as a Business Intelligence Practice:Current Landscape & Future Prospects,” Journal of Internet Social Networking & Virtual Communities, pp. 1–12, Jul. 2014, doi: 10.5171/2014.920553.
Z. Mottaghinia, M.-R. Feizi-Derakhshi, L. Farzinvash, and P. Salehpour, “A review of approaches for topic detection in Twitter,” Journal of Experimental & Theoretical Artificial Intelligence, vol. 33, no. 5, pp. 747–773, Sep. 2021, doi: 10.1080/0952813X.2020.1785019.
A. R. Rahmanti, D. N. A. Ningrum, L. Lazuardi, H.-C. Yang, and Y.-C. Li, “Social Media Data Analytics for Outbreak Risk Communication: Public Attention on the ‘New Normal’ During the COVID-19 Pandemic in Indonesia,” Comput Methods Programs Biomed, vol. 205, p. 106083, Jun. 2021, doi: 10.1016/j.cmpb.2021.106083.
D. Amanatidis, I. Mylona, I. (Eirini) Kamenidou, S. Mamalis, and A. Stavrianea, “Mining Textual and Imagery Instagram Data during the COVID-19 Pandemic,” Applied Sciences, vol. 11, no. 9, p. 4281, May 2021, doi: 10.3390/app11094281.
M. A. Rosid, A. S. Fitrani, I. R. I. Astutik, N. I. Mulloh, and H. A. Gozali, “Improving Text Preprocessing For Student Complaint Document Classification Using Sastrawi,” IOP Conf Ser Mater Sci Eng, vol. 874, no. 1, p. 012017, Jun. 2020, doi: 10.1088/1757-899X/874/1/012017.
E. S. Negara, D. Triadi, and R. Andryani, “Topic Modelling Twitter Data with Latent Dirichlet Allocation Method,” in 2019 International Conference on Electrical Engineering and Computer Science (ICECOS), IEEE, Oct. 2019, pp. 386–390. doi: 10.1109/ICECOS47637.2019.8984523.
S. J. Blair, Y. Bi, and M. D. Mulvenna, “Aggregated topic models for increasing social media topic coherence,” Applied Intelligence, vol. 50, no. 1, pp. 138–156, Jan. 2020, doi: 10.1007/s10489-019-01438-z.
J. A. Wahid et al., “Topic2Labels: A framework to annotate and classify the social media data through LDA topics and deep learning models for crisis response,” Expert Syst Appl, vol. 195, p. 116562, Jun. 2022, doi: 10.1016/j.eswa.2022.116562.
S. J. Blair, Y. Bi, and M. D. Mulvenna, “Aggregated topic models for increasing social media topic coherence,” Applied Intelligence, vol. 50, no. 1, pp. 138–156, Jan. 2020, doi: 10.1007/s10489-019-01438-z.
K. Porter, “Analyzing the DarkNetMarkets subreddit for evolutions of tools and trends using LDA topic modeling,” Digit Investig, vol. 26, pp. S87–S97, Jul. 2018, doi: 10.1016/j.diin.2018.04.023.
Instagram, “dibimbing.id,” https://www.instagram.com/dibimbing.id/, 2023.