Deep Convolutional Neural Networks Transfer Learning Comparison on Arabic Handwriting Recognition System
DOI: http://dx.doi.org/10.30630/joiv.7.2.1605
Abstract
Keywords
Full Text:
PDFReferences
T. M. Ghanim, M. I. Khalil, and H. M. Abbas, "Comparative Study on Deep Convolution Neural Networks DCNN-Based Offline Arabic Handwriting Recognition," IEEE Access, vol. 8, pp. 95465–95482, 2020, doi: 10.1109/ACCESS.2020.2994290.
M. Shams, A. A. Elsonbaty, and W. Z. El Sawy, "Arabic handwritten character recognition based on convolution neural networks and support vector machine," Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 8, pp. 144–149, 2020, doi: 10.14569/IJACSA.2020.0110819.
D. K. Muhsen, S. M. Ali, R. M. Zaki, and A. A. Ahmed, "Arguments extraction for e-health services based on text mining tools," Period. Eng. Nat. Sci., vol. 9, no. 3, pp. 309–316, 2021, doi: 10.21533/pen.v9i3.2149.
H. Akouaydi, S. Njah, W. Ouarda, A. Samet, M. Zaied, and A. M. Alimi, "Convolutional neural networks for online Arabic characters recognition with beta-elliptic knowledge domain," 2019 Int. Conf. Doc. Anal. Recognit. Work. ICDARW 2019, vol. 6, pp. 41–46, 2019, doi: 10.1109/ICDARW.2019.50114.
H. Butt, M. R. Raza, M. J. Ramzan, M. J. Ali, and M. Haris, "Attention-Based CNN-RNN Arabic Text Recognition from Natural Scene Images," Forecasting, vol. 3, no. 3, pp. 520–540, 2021, doi: 10.3390/forecast3030033.
M. Eltay, A. Zidouri, and I. Ahmad, "Exploring Deep Learning Approaches to Recognize Handwritten Arabic Texts," IEEE Access, vol. 8, pp. 89882–89898, 2020, doi: 10.1109/ACCESS.2020.2994248.
N. Altwaijry and I. Al-Turaiki, "Arabic handwriting recognition system using convolutional neural network," Neural Comput. Appl., vol. 33, no. 7, pp. 2249–2261, 2021, doi: 10.1007/s00521-020-05070-8.
M. N. Aljarrah, M. M. Zyout, and R. Duwairi, "Arabic Handwritten Characters Recognition Using Convolutional Neural Network," 2021 12th Int. Conf. Inf. Commun. Syst. ICICS 2021, no. February, pp. 182–188, 2021, doi: 10.1109/ICICS52457.2021.9464596.
D. Radovanovic and S. Dukanovic, "Image-Based Plant Disease Detection: A Comparison of Deep Learning and Classical Machine Learning Algorithms," 2020 24th Int. Conf. Inf. Technol. IT 2020, no. February, pp. 1–4, 2020, doi: 10.1109/IT48810.2020.9070664.
J. Rozaqi, A. Sunyoto, and R. Arief, "Implementasi Transfer Learning pada Algoritma Convolutional Neural Network Untuk Identifikasi Penyakit Daun Kentang Implementation of Transfer Learning in the Convolutional Neural Network Algorithm for Identification of Potato Leaf Disease," vol. 1, no. 1, 2021.
R. Rismiyati and A. Luthfiarta, “VGG16 Transfer Learning Architecture for Salak Fruit Quality Classification,†Telematika, vol. 18, no. 1, p. 37, 2021, doi: 10.31315/telematika.v18i1.4025.
E. C. Too, L. Yujian, S. Njuki, and L. Yingchun, "A comparative study of fine-tuning deep learning models for plant disease identification," Comput. Electron. Agric., vol. 161, no. February, pp. 272–279, 2019, doi: 10.1016/j.compag.2018.03.032.
S. K. Roy, G. Krishna, S. R. Dubey, and B. B. Chaudhuri, "HybridSN: Exploring 3-D-2-D CNN Feature Hierarchy for Hyperspectral Image Classification," IEEE Geosci. Remote Sens. Lett., vol. 17, no. 2, pp. 277–281, 2020, doi: 10.1109/LGRS.2019.2918719.
D. R. Sarvamangala and R. V. Kulkarni, "Convolutional neural networks in medical image understanding: a survey," Evol. Intell., vol. 15, no. 1, 2022, doi: 10.1007/s12065-020-00540-3.
I. Goodfellow, Y. Bengio, and C. Aaron, Deep Learning. MIT Press, 2016.
Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, "A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects," IEEE Trans. Neural Networks Learn. Syst., vol. 33, no. 12, pp. 6999–7019, 2022, doi: 10.1109/TNNLS.2021.3084827.
T. Kattenborn, J. Leitloff, F. Schiefer, and S. Hinz, "Review on Convolutional Neural Networks (CNN) in vegetation remote sensing," ISPRS J. Photogramm. Remote Sens., vol. 173, no. November 2020, pp. 24–49, 2021, doi: 10.1016/j.isprsjprs.2020.12.010.
Q. A. Al-Haija and A. Adebanjo, "Breast cancer diagnosis in histopathological images using ResNet-50 convolutional neural network," IEMTRONICS 2020 - Int. IOT, Electron. Mechatronics Conf. Proc., vol. 50, 2020, doi: 10.1109/IEMTRONICS51293.2020.9216455.
R. Sujatha, J. M. Chatterjee, N. Z. Jhanjhi, and S. N. Brohi, "Performance of deep learning vs machine learning in plant leaf disease detection," Microprocess. Microsyst., vol. 80, no. November 2020, p. 103615, 2021, doi: 10.1016/j.micpro.2020.103615.
A. G. Howard et al., "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications," 2017.
D. Sarwinda, R. H. Paradisa, A. Bustamam, and P. Anggia, "Deep Learning in Image Classification using Residual Network (ResNet) Variants for Detection of Colorectal Cancer," Procedia Comput. Sci., vol. 179, no. 2019, pp. 423–431, 2021, doi: 10.1016/j.procs.2021.01.025.
K. Deeba and B. Amutha, "ResNet - deep neural network architecture for leaf disease classification," Microprocess. Microsyst., p. 103364, 2020, doi: 10.1016/j.micpro.2020.103364.
A. M. Rafi et al., "Application of DenseNet in Camera Model Identification and Post-processing Detection," pp. 19–28, 2018.
Z. Zhang, Z. Tang, Y. Wang, H. Zhang, S. Yan, and M. Wang, "Compressed DenseNet for Lightweight Character Recognition," arXiv Prepr. arXiv1912.07016, pp. 1–11, 2019.
K. Zhang, Y. Guo, X. Wang, J. Yuan, and Q. Ding, "Multiple feature reweight DenseNet for image classification," IEEE Access, vol. 7, pp. 9872–9880, 2019, doi: 10.1109/ACCESS.2018.2890127.
P. Hridayami, I. K. G. D. Putra, and K. S. Wibawa, "Fish species recognition using VGG16 deep convolutional neural network," J. Comput. Sci. Eng., vol. 13, no. 3, pp. 124–130, 2019, doi: 10.5626/JCSE.2019.13.3.124.
D. Theckedath and R. R. Sedamkar, "Detecting Affect States Using VGG16, ResNet50 and SE-ResNet50 Networks," SN Comput. Sci., vol. 1, no. 2, pp. 1–7, 2020, doi: 10.1007/s42979-020-0114-9.
M. Mujahid, F. Rustam, R. Ãlvarez, J. Luis Vidal Mazón, I. de la T. DÃez, and I. Ashraf, "Pneumonia Classification from X-ray Images with Inception-V3 and Convolutional Neural Network," Diagnostics, vol. 12, no. 5, pp. 1–16, 2022, doi: 10.3390/diagnostics12051280.
A. Michele, V. Colin, and D. D. Santika, "Mobilenet convolutional neural networks and support vector machines for palmprint recognition," Procedia Comput. Sci., vol. 157, pp. 110–117, 2019, doi: 10.1016/j.procs.2019.08.147.
C. Bi, J. Wang, Y. Duan, B. Fu, J. R. Kang, and Y. Shi, "MobileNet Based Apple Leaf Diseases Identification," Mob. Networks Appl., 2020, doi: 10.1007/s11036-020-01640-1.