The Rise of Deep Learning in Cyber Security: Bibliometric Analysis of Deep Learning and Malware
DOI: http://dx.doi.org/10.62527/joiv.8.3.1535
Abstract
Full Text:
PDFReferences
REFERENCES
W. J. Zhang, G. Yang, Y. Lin, C. Ji, and M. M. Gupta, “On Definition of Deep Learning,” World Automation Congress Proceedings, vol. 2018-June, pp. 232–236, Aug. 2018, doi:10.23919/WAC.2018.8430387.
S. Sohangir, D. Wang, A. Pomeranets, and T. M. Khoshgoftaar, “Big Data: Deep Learning for financial sentiment analysis,” Journal of Big Data 2018 5:1, vol. 5, no. 1, pp. 1–25, Jan. 2018, doi: 10.1186/S40537-017-0111-6.
S. Dargan, M. Kumar, M. R. Ayyagari, and G. Kumar, “A Survey of Deep Learning and Its Applications: A New Paradigm to Machine Learning,” Archives of Computational Methods in Engineering 2019 27:4, vol. 27, no. 4, pp. 1071–1092, Jun. 2019, doi: 10.1007/S11831-019-09344-W.
N. Hassan, A. F.-I. J. of Software, and undefined 2021, “Model for phishing websites classification using artificial neural network,” journal.ump.edu.my, vol. 7, no. 2, pp. 1–8, May 2021, doi:10.15282/ijsecs.7.2.2021.1.0084.
M. Abbas and H. Ghous, “Early Detection of Breast Cancer Tumors using Linear Discriminant Analysis Feature Selection with Different Machine Learning Classification Methods,” Computer Science & Engineering: An International Journal, vol. 12, no. 1, pp. 171–186, 2022, doi: 10.5121/cseij.2022.12117.
U. P. Muhammad Sajjad, Maruf Pasha, “Parametric Evaluation of E-Health Systems,” Computer Science & Engineering: An International Journal. Accessed: Jul. 28, 2022. [Online]. Available: https://www.ijisct.com/index.php/ojs/article/view/3
O. Aslan and R. Samet, “A Comprehensive Review on Malware Detection Approaches,” IEEE Access, vol. 8, pp. 6249–6271, 2020, doi: 10.1109/access.2019.2963724.
H. Eljak et al., “E-Learning-Based Cloud Computing Environment: A Systematic Review, Challenges, and Opportunities,” IEEE Access, vol. 12, pp. 7329–7355, 2024, doi: 10.1109/access.2023.3339250.
N. F. Idris and M. A. Ismail, “A review of homogenous ensemble methods on the classification of breast cancer data,” 2024, Wydawnictwo SIGMA-NOT. doi: 10.15199/48.2024.01.21.
Y.-H. Choi et al., “Using deep learning to solve computer security challenges: a survey,” Cybersecurity 2020 3:1, vol. 3, no. 1, pp. 1–32, Aug. 2020, doi: 10.1186/S42400-020-00055-5.
Y. Pan, X. Ge, C. Fang, and Y. Fan, “A Systematic Literature Review of Android Malware Detection Using Static Analysis,” IEEE Access, vol. 8, pp. 116363–116379, 2020, doi: 10.1109/access.2020.3002842.
J. Senanayake, H. Kalutarage, and M. O. Al-Kadri, “Android Mobile Malware Detection Using Machine Learning: A Systematic Review,” Electronics 2021, Vol. 10, Page 1606, vol. 10, no. 13, p. 1606, Jul. 2021, doi: 10.3390/electronics10131606.
A. O. Christiana, B. A. Gyunka, and A. Noah, “Android Malware Detection through Machine Learning Techniques: A Review,” International Journal of Online and Biomedical Engineering (iJOE), vol. 16, no. 02, pp. 14–30, Feb. 2020.
K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu, “A Review of Android Malware Detection Approaches Based on Machine Learning,” IEEE Access, vol. 8, pp. 124579–124607, 2020, doi:10.1109/ACCESS.2020.3006143.
N. F. Idris, M. A. Ismail, M. I. M. Jaya, A. O. Ibrahim, A. W. Abulfaraj, and F. Binzagr, “Stacking with Recursive Feature Elimination-Isolation Forest for classification of diabetes mellitus,” PLoS One, vol. 19, no. 5 May, May 2024, doi:10.1371/journal.pone.0302595.
N. N. M. Azam, M. A. Ismail, M. S. Mohamad, A. O. Ibrahim, and S. Jeba, “Classification of COVID-19 Symptoms Using Multilayer Perceptron,” Iraqi Journal for Computer Science and Mathematics, vol. 4, no. 4, pp. 99–110, 2023, doi: 10.52866/ijcsm.2023.04.04.009.
C. Kumar, T. S. Bharati, and S. Prakash, “Online Social Network Security: A Comparative Review Using Machine Learning and Deep Learning,” Neural Processing Letters 2021 53:1, vol. 53, no. 1, pp. 843–861, Jan. 2021, doi: 10.1007/S11063-020-10416-3.
J. L. Ruiz-Real, J. Uribe-Toril, J. A. Torres, and J. D. E. Pablo, “Artificial intelligence in business and economics research: Trends and future,” Journal of Business Economics and Management, vol. 22, no. 1, pp. 98–117, Jan. 2021, doi: 10.3846/JBEM.2020.13641.
A. U. Osarogiagbon, F. Khan, R. Venkatesan, and P. Gillard, “Review and analysis of supervised machine learning algorithms for hazardous events in drilling operations,” Process Safety and Environmental Protection, vol. 147, pp. 367–384, 2021, doi:10.1016/j.psep.2020.09.038.
Y. Li, Z. Xu, X. Wang, and X. Wang, “A bibliometric analysis on deep learning during 2007–2019,” International Journal of Machine Learning and Cybernetics 2020 11:12, vol. 11, no. 12, pp. 2807–2826, Jun. 2020, doi: 10.1007/S13042-020-01152-0.
A. Montelongo and J. L. Becker, “Tasks performed in the legal domain through Deep Learning: A bibliometric review (1987-2020),” IEEE International Conference on Data Mining Workshops, ICDMW, vol. 2020-November, pp. 775–781, Nov. 2020, doi:10.1109/icdmw51313.2020.00113.
A. Montelongo and J. L. Becker, “A bibliometric network analysis of Deep Learning publications applied into legal documents,” Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020, pp. 2131–2138, Dec. 2020, doi:10.1109/bigdata50022.2020.9377970.
O. Faust, Y. Hagiwara, T. J. Hong, S. Lih, and R. Acharya, “Deep learning for healthcare applications based on physiological signals: A review,” Comput Methods Programs Biomed, vol. 161, pp. 1–13, 2018, doi: 10.1016/j.cmpb.2018.04.005.
S. A. Ebrahim, J. Poshtan, S. M. Jamali, and N. A. Ebrahim, “Quantitative and Qualitative Analysis of Time-Series Classification Using Deep Learning,” IEEE Access, vol. 8, pp. 90202–90215, 2020, doi: 10.1109/access.2020.2993538.
Y. Bai, X. Sun, Y. Ji, J. Huang, W. Fu, and H. Shi, “Bibliometric and visualized analysis of deep learning in remote sensing,” https://doi-org.ezaccess.library.uitm.edu.my/10.1080/01431161.2021.1949069, 2021, doi: 10.1080/01431161.2021.1949069.
S. Nakhodchi and A. Dehghantanha, “A Bibliometric Analysis on the Application of Deep Learning in Cybersecurity,” Security of Cyber-Physical Systems, pp. 203–221, 2020, doi: 10.1007/978-3-030-45541-5_11.
Z. Wang, Q. Liu, and Y. Chi, “Review of android malware detection based on deep learning,” IEEE Access, vol. 8, pp. 181102–181126, 2020, doi: 10.1109/ACCESS.2020.3028370.
P. Sreekumari, “Malware Detection Techniques Based on Deep Learning,” Proceedings - 2020 IEEE 6th Intl Conference on Big Data Security on Cloud, BigDataSecurity 2020, 2020 IEEE Intl Conference on High Performance and Smart Computing, HPSC 2020 and 2020 IEEE Intl Conference on Intelligent Data and Security, IDS 2020, pp. 65–70, May 2020, doi: 10.1109/bigdatasecurity-hpsc-ids49724.2020.00023.
QiuJunyang, ZhangJun, LuoWei, PanLei, NepalSurya, and XiangYang, “A Survey of Android Malware Detection with Deep Neural Models,” ACM Computing Surveys (CSUR), vol. 53, no. 6, Dec. 2020, doi: 10.1145/3417978.
E. Rodriguez, B. Otero, N. Gutierrez, and R. Canal, “A survey of deep learning techniques for cybersecurity in mobile networks,” IEEE Communications Surveys and Tutorials, vol. 23, no. 3, pp. 1920–1955, Jul. 2021, doi: 10.1109/comst.2021.3086296.
D. S. Berman, A. L. Buczak, J. S. Chavis, and C. L. Corbett, “A Survey of Deep Learning Methods for Cyber Security,” Information 2019, Vol. 10, Page 122, vol. 10, no. 4, p. 122, Apr. 2019, doi: 10.3390/info10040122.
M. Aria and C. Cuccurullo, “bibliometrix: An R-tool for comprehensive science mapping analysis,” J Informetr, vol. 11, pp. 959–975, 2017, doi: 10.1016/j.joi.2017.08.007.
“Business Intelligence and Analytics Software.” Accessed: Oct. 15, 2021. [Online]. Available: https://www.tableau.com/
S. Mortazavi, M. H. Eslami, A. Hajikhani, and J. Väätänen, “Mapping inclusive innovation: A bibliometric study and literature review,” 2020, doi: 10.1016/j.jbusres.2020.07.030.
F. Strozzi, C. Colicchia, A. Creazza, and C. Noè, “Literature review on the ‘Smart Factory’ concept using bibliometric tools,” https://doi-org.ezaccess.library.uitm.edu.my/10.1080/00207543.2017.1326643, vol. 55, no. 22, 2017, doi: 10.1080/00207543.2017.1326643.
W. Liu, M. Huang, and H. Wang, “Same journal but different numbers of published records indexed in Scopus and Web of Science Core Collection: causes, consequences, and solutions,” Scientometrics 2021 126:5, vol. 126, no. 5, pp. 4541–4550, Mar. 2021, doi:10.1007/S11192-021-03934-X.
A. Martín-Martín, M. Thelwall, E. Orduna-Malea, and E. Delgado López-Cózar, “Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: a multidisciplinary comparison of coverage via citations,” Scientometrics 2020 126:1, vol. 126, no. 1, pp. 871–906, Sep. 2020, doi: 10.1007/S11192-020-03690-4.
W. Liu, “A matter of time: publication dates in Web of Science Core Collection,” Scientometrics 2020 126:1, vol. 126, no. 1, pp. 849–857, Oct. 2020, doi: 10.1007/S11192-020-03697-X.
J. Zhu and W. Liu, “A tale of two databases: the use of Web of Science and Scopus in academic papers,” Scientometrics 2020 123:1, vol. 123, no. 1, pp. 321–335, Feb. 2020, doi: 10.1007/S11192-020-03387-8.
R. Pranckutė, “Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World,” Publications 2021, Vol. 9, Page 12, vol. 9, no. 1, p. 12, Mar. 2021, doi:10.3390/publications9010012.
G. Pech and C. Delgado, “Assessing the publication impact using citation data from both Scopus and WoS databases: an approach validated in 15 research fields,” Scientometrics 2020 125:2, vol. 125, no. 2, pp. 909–924, Aug. 2020, doi: 10.1007/S11192-020-03660-W.
P. P. Severo, L. B. Furstenau, M. K. Sott, D. Cossul, M. S. Bender, and N. L. Bragazzi, “Thirty Years of Human Rights Study in the Web of Science Database (1990–2020),” International Journal of Environmental Research and Public Health 2021, Vol. 18, Page 2131, vol. 18, no. 4, p. 2131, Feb. 2021, doi: 10.3390/ijerph18042131.
R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, and S. Venkatraman, “Robust Intelligent Malware Detection Using Deep Learning,” IEEE Access, vol. 7, pp. 46717–46738, 2019, doi: 10.1109/ACCESS.2019.2906934.
M. Kalash, M. Rochan, N. Mohammed, N. Bruce, Y. Wang, and F. Iqbal, “A deep learning framework for malware classification,” International Journal of Digital Crime and Forensics, vol. 12, no. 1, pp. 90–108, Jan. 2020, doi: 10.4018/ijdcf.2020010105.
R. Jusoh, A. Firdaus, S. Anwar, M. Z. Osman, M. F. Darmawan, and M. F. A. Razak, “Malware detection using static analysis in Android: a review of FeCO (features, classification, and obfuscation),” PeerJ Comput Sci, vol. 7, p. e522, Jun. 2021, doi: 10.7717/peerj-cs.522.
W. Wu, T. Huang, and K. Gong, “Ethical Principles and Governance Technology Development of AI in China,” Engineering, vol. 6, no. 3, pp. 302–309, Mar. 2020, doi: 10.1016/j.eng.2019.12.015.
“China overtakes US in AI research - Nikkei Asia.” Accessed: Oct. 15, 2021. [Online]. Available: https://asia.nikkei.com/Spotlight/Datawatch/China-overtakes-US-in-AI-research
A. Firdaus, M. F. A. Razak, A. Feizollah, I. A. T. Hashem, M. Hazim, and N. B. Anuar, “The rise of ‘blockchain’: bibliometric analysis of blockchain study,” Scientometrics, vol. 120, no. 3, pp. 1289–1331, 2019, doi: 10.1007/s11192-019-03170-4.
J. Mohamad Arif, M. F. Ab Razak, S. Awang, S. R. Tuan Mat, N. S. N. Ismail, and A. Firdaus, “A static analysis approach for Android permission-based malware detection systems,” PLoS One, vol. 16, no. 9, p. e0257968, 2021, doi: 10.1371/journal.pone.0257968.
A. Firdaus, N. B. Anuar, A. Karim, and M. F. A. Razak, “Discovering optimal features using static analysis and a genetic search based method for Android malware detection,” Frontiers of Information Technology and Electronic Engineering, vol. 19, no. 6, pp. 712–736, Jun. 2018, doi: 10.1631/fitee.1601491.
J. Mohamad Arif, M. F. Ab Razak, S. R. Tuan Mat, S. Awang, N. S. N. Ismail, and A. Firdaus, “Android mobile malware detection using fuzzy AHP,” Journal of Information Security and Applications, vol. 61, p. 102929, Sep. 2021, doi: 10.1016/j.jisa.2021.102929.
A. Firdaus, N. B. Anuar, M. F. A. Razak, I. A. T. Hashem, S. Bachok, and A. K. Sangaiah, “Root Exploit Detection and Features Optimization: Mobile Device and Blockchain Based Medical Data Management,” J Med Syst, vol. 42, no. 6, 2018, doi: 10.1007/s10916-018-0966-x.
S. R. T. Mat, M. F. A. Razak, M. N. M. Kahar, J. M. Arif, and A. Firdaus, “A Bayesian probability model for Android malware detection,” ICT Express, Sep. 2021, doi: 10.1016/j.icte.2021.09.003.
V. Braun and V. Clarke, “Can I use TA? Should I use TA? Should I not use TA? Comparing reflexive thematic analysis and other pattern-based qualitative analytic approaches,” Couns Psychother Res, vol. 21, no. 1, pp. 37–47, Mar. 2021, doi: 10.1002/capr.12360.
B. Yuan, J. Wang, D. Liu, W. Guo, P. Wu, and X. Bao, “Byte-level malware classification based on markov images and deep learning,” Comput Secur, vol. 92, p. 101740, May 2020, doi:10.1016/j.cose.2020.101740.
J. Hemalatha, S. A. Roseline, S. Geetha, S. Kadry, and R. Damaševičius, “An Efficient DenseNet-Based Deep Learning Model for Malware Detection,” Entropy 2021, Vol. 23, Page 344, vol. 23, no. 3, p. 344, Mar. 2021, doi: 10.3390/E23030344.
O. Aslan and A. A. Yilmaz, “A New Malware Classification Framework Based on Deep Learning Algorithms,” IEEE Access, vol. 9, pp. 87936–87951, 2021, doi: 10.1109/access.2021.3089586.
N. Marastoni, R. Giacobazzi, and M. Dalla Preda, “Data augmentation and transfer learning to classify malware images in a deep learning context,” Journal of Computer Virology and Hacking Techniques 2021 17:4, vol. 17, no. 4, pp. 279–297, Apr. 2021, doi:10.1007/S11416-021-00381-3.
J. Namgung, S. Son, and Y. S. Moon, “Efficient Deep Learning Models for DGA Domain Detection,” Security and Communication Networks, vol. 2021, 2021, doi: 10.1155/2021/8887881.
L. Yang, G. Liu, Y. Dai, J. Wang, and J. Zhai, “Detecting stealthy domain generation algorithms using heterogeneous deep neural network framework,” IEEE Access, vol. 8, pp. 82876–82889, 2020, doi: 10.1109/access.2020.2988877.
F. Ren, Z. Jiang, X. Wang, and J. Liu, “A DGA domain names detection modeling method based on integrating an attention mechanism and deep neural network,” Cybersecurity, vol. 3, no. 1, Dec. 2020, doi: 10.1186/S42400-020-00046-6.
C. Hwang, H. Kim, H. Lee, and T. Lee, “Effective dga-domain detection and classification with textcnn and additional features,” Electronics (Switzerland), vol. 9, no. 7, pp. 1–18, Jul. 2020, doi: 10.3390/electronics9071070.
Y. Chen, B. Pang, G. Shao, G. Wen, and X. Chen, “DGA-based botnet detection toward imbalanced multiclass learning,” Tsinghua Sci Technol, vol. 26, no. 4, pp. 387–402, Aug. 2021, doi:10.26599/TST.2020.9010021.
M. F. A. Razak, N. B. Anuar, R. Salleh, and A. Firdaus, “The rise of ‘malware’: Bibliometric analysis of malware study,” Nov. 01, 2016, Academic Press. doi: 10.1016/j.jnca.2016.08.022.
A. Firdaus, N. B. Anuar, M. F. A. Razak, and A. K. Sangaiah, “Bio-inspired computational paradigm for feature investigation and malware detection: interactive analytics,” Multimed Tools Appl, vol. 77, no. 14, pp. 17519–17555, Jul. 2018, doi: 10.1007/S11042-017-4586-0.
S. Yang, S. Li, W. Chen, and Y. Liu, “A Real-Time and Adaptive-Learning Malware Detection Method Based on API-Pair Graph,” IEEE Access, vol. 8, pp. 208120–208135, 2020, doi:10.1109/access.2020.3038453.
I. Yaqoob, I. A. T. Hashem, A. Ahmed, S. M. A. Kazmi, and C. S. Hong, “Internet of things forensics: Recent advances, taxonomy, requirements, and open challenges,” Future Generation Computer Systems, vol. 92, pp. 265–275, Mar. 2019, doi:10.1016/j.future.2018.09.058.
S. Yoo, S. Kim, S. Kim, and B. B. Kang, “AI-HydRa: Advanced hybrid approach using random forest and deep learning for malware classification,” Inf Sci (N Y), vol. 546, pp. 420–435, Feb. 2021, doi:10.1016/j.ins.2020.08.082.
L. Shiqi, T. Shengwei, Y. Long, Y. Jiong, and S. Hua, “Android malicious code classification using deep belief network,” KSII Transactions on Internet and Information Systems, vol. 12, no. 1, pp. 454–475, Jan. 2018, doi: 10.3837/TIIS.2018.01.022.
P. Zegzhda, D. Zegzhda, E. Pavlenko, and G. Ignatev, “Applying deep learning techniques for Android malware detection,” ACM International Conference Proceeding Series, Sep. 2018, doi:10.1145/3264437.3264476.
T. K. Chang and G. H. Hwang, “The design and implementation of an application program interface for securing XML documents,” Journal of Systems and Software, vol. 80, no. 8, pp. 1362–1374, Aug. 2007, doi: 10.1016/j.jss.2006.10.051.
M. Sharif, V. Yegneswaran, H. Saidi, P. Porras, and W. Lee, “Eureka: A framework for enabling static malware analysis,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5283 LNCS, pp. 481–500, 2008, doi: 10.1007/978-3-540-88313-5_31.
H. Y. Yousra Aafer, Wenliang Du, “DroidAPIMiner: Mining API-Level Features for Robust Malware Detection in Android,” Servicios de Publicación UCM, vol. 9, no. 1, pp. 67–94, 2013, doi: 10.1007/978-3-319-04283-1_6.
W. Enck, “Defending users against smartphone apps: Techniques and future directions,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7093 LNCS, pp. 49–70, 2011, doi: 10.1007/978-3-642-25560-1_3.
H. J. Meenu Ganesh, Priyanka Pednekar, Pooja Prabhuswamy, Divyashri Sreedharan Nair, Younghee Park, “CNN-Based Android Malware Detection,” Proceedings - 2017 International Conference on Software Security and Assurance, ICSSA 2017, pp. 60–65, 2018, doi:10.1109/icssa.2017.18.
A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A. Wahab, “A review on feature selection in mobile malware detection,” Jun. 01, 2015, Elsevier Ltd. doi: 10.1016/j.diin.2015.02.001.
R. S. Arslan, “AndroAnalyzer: android malicious software detection based on deep learning,” PeerJ Comput Sci, vol. 7, p. e533, May 2021, doi: 10.7717/peerj-cs.533.
W. Niu, R. Cao, X. Zhang, K. Ding, K. Zhang, and T. Li, “Opcode-level function call graph based android malware classification using deep learning,” Sensors (Switzerland), vol. 20, no. 13, pp. 1–23, Jul. 2020, doi: 10.3390/S20133645.
X. Su, W. Shi, X. Qu, Y. Zheng, and X. Liu, “DroidDeep: using Deep Belief Network to characterize and detect android malware,” Soft Computing 2020 24:8, vol. 24, no. 8, pp. 6017–6030, Jan. 2020, doi:10.1007/S00500-019-04589-W.
W. Enck, P. Gilbert, L. P. Cox, J. Jung, P. Mcdaniel, and A. N. Sheth, “TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones”.
S. Hou, A. Saas, L. Chen, and Y. Ye, “Deep4MalDroid: A deep learning framework for android malware detection based on Linux kernel system call graphs,” in Proceedings - 2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops, WIW 2016, 2017, pp. 104–111. doi: 10.1109/WIW.2016.15.
S. Y. Yerima, S. Sezer, and G. McWilliams, “Analysis of Bayesian classification-based approaches for Android malware detection,” IET Inf Secur, vol. 8, no. 1, pp. 25–36, Jan. 2014, doi: 10.1049/IET-IFS.2013.0095.
X. Su, M. Chuah, and G. Tan, “Smartphone dual defense protection framework: Detecting malicious applications in android markets,” Proceedings - 2012 8th International Conference on Mobile Ad Hoc and Sensor Networks, MSN 2012, pp. 153–160, Dec. 2012, doi:10.1109/MSN.2012.43.
H. S. Ham and M. J. Choi, “Analysis of Android malware detection performance using machine learning classifiers,” International Conference on ICT Convergence, pp. 490–495, 2013, doi:10.1109/ICTC.2013.6675404.
B. Amos, H. Turner, and J. White, “Applying machine learning classifiers to dynamic android malware detection at scale,” 2013 9th International Wireless Communications and Mobile Computing Conference, IWCMC 2013, pp. 1666–1671, 2013, doi:10.1109/IWCMC.2013.6583806.
A. Gianazza, F. Maggi, A. Fattori, L. Cavallaro, and S. Zanero, “PuppetDroid: A User-Centric UI Exerciser for Automatic Dynamic Analysis of Similar Android Applications,” Feb. 2014, doi:10.48550/arxiv.1402.4826.
A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation system for android apps,” 2013 9th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering, ESEC/FSE 2013 - Proceedings, pp. 224–234, 2013, doi:10.1145/2491411.2491450.
I. Furxhi, F. Murphy, M. Mullins, and C. A. Poland, “Machine learning prediction of nanoparticle in vitro toxicity: A comparative study of classifiers and ensemble-classifiers using the Copeland Index,” Toxicol Lett, vol. 312, pp. 157–166, Sep. 2019, doi:10.1016/j.toxlet.2019.05.016.
W. Huang and J. W. Stokes, “MtNet: A multi-task neural network for dynamic malware classification,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer, Cham, 2016, pp. 399–418. doi: 10.1007/978-3-319-40667-1_20.
H. Agrawal and J. R. Horgan, “Effective and Efficient Malware Detection at the End Host,” in Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), Association for Computing Machinery, Jun. 1990, pp. 246–256. doi: 10.1145/93542.93576.
Y. Park, D. S. Reeves, and M. Stamp, “Deriving common malware behavior through graph clustering,” Comput Secur, vol. 39, no. PART B, pp. 419–430, 2013, doi: 10.1016/J.COSE.2013.09.006.
Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy: semantics-based detection of Android malware through static analysis,” Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering - FSE 2014, pp. 576–587, 2014, doi: 10.1145/2635868.2635869.
M. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic Detection of Capability Leaks in Stock Android Smartphones,” in Proceedings of the 19th Network and Distributed System Security Symposium (NDSS), San Diego, CA, 2012, pp. 1–15.
S. Arzt et al., “FLOWDROID: Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for Android apps,” in ACM SIGPLAN Notices, 2014, pp. 259–269. doi:10.1145/2594291.2594299.
G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and J. Blasco, “Dendroid: A text mining approach to analyzing and classifying code structures in Android malware families,” Expert Syst Appl, vol. 41, no. 4 PART 1, pp. 1104–1117, 2014, doi: 10.1016/j.eswa.2013.07.106.
J. Sahs and L. Khan, “A Machine Learning Approach to Android Malware Detection,” in European Intelligence and Security Informatics Conference, (EISIC), Odense, University of Southern Denmark, 2012, pp. 141–147. doi: 10.1109/EISIC.2012.34.
J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang, “AsDroid: Detecting Stealthy Behaviors in Android Applications by User Interface and Program Behavior Contradiction,” in Proceeding ICSE 2014 Proceedings of the 36th International Conference on Software Engineering, Hyderabad, India, 2014, pp. 1036–1046. doi:10.1145/2568225.2568301.
M. Junaid, D. Liu, and D. Kung, “Dexteroid: Detecting malicious behaviors in Android apps using reverse-engineered life cycle models,” Comput Secur, vol. 59, pp. 92–117, 2016, doi:10.1016/j.cose.2016.01.008.
L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “CHEX: Statically vetting Android apps for component hijacking vulnerabilities,” in Proceedings of the ACM Conference on Computer and Communications Security, 2012, pp. 229–240. doi:10.1145/2382196.2382223.
L. Deshotels, V. Notani, and A. Lakhotia, “DroidLegacy: Automated familial classification of Android malware,” in Proceedings of the 3rd ACM SIGPLAN Program Protection and Reverse Engineering Workshop 2014, PPREW 2014, 2014, pp. 1–12. doi:10.1145/2556464.2556467.
B. V. Chess, “Improving computer security using extended static checking,” in Proceedings - IEEE Symposium on Security and Privacy, 2002, pp. 160–173. doi: 10.1109/secpri.2002.1004369.
A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for malware detection,” Proceedings - Annual Computer Security Applications Conference, ACSAC, pp. 421–430, 2007, doi:10.1109/acsac.2007.21.
M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “DL-Droid: Deep learning based android malware detection using real devices,” Comput Secur, vol. 89, p. 101663, Feb. 2020, doi:10.1016/j.cose.2019.101663.
A. Malhotra and K. Bajaj, “A hybrid pattern based text mining approach for malware detection using DBScan,” CSI Transactions on ICT, vol. 4, no. 2–4, pp. 141–149, Dec. 2016, doi: 10.1007/s40012-016-0095-y.
T. Meng, X. Jing, Z. Yan, and W. Pedrycz, “A survey on machine learning for data fusion,” Information Fusion, vol. 57, no. 2, pp. 115–129, 2020, doi: 10.1016/j.inffus.2019.12.001.
A. M. Ismail et al., “Artificial Bee Colony algorithm in estimating kinetic parameters for yeast fermentation pathway,” J Integr Bioinform, vol. 20, no. 2, Jun. 2023, doi: 10.1515/jib-2022-0051.
M. A. Halim, A. Abdullah, and K. A. Z. Ariffin, “Recurrent neural network for malware detection,” International Journal of Advances in Soft Computing and its Applications, vol. 11, no. 1, pp. 46–63, 2019.
L. N. Vu and S. Jung, “AdMat: A CNN-on-Matrix Approach to Android Malware Detection and Classification,” IEEE Access, vol. 9, pp. 39680–39694, 2021, doi: 10.1109/access.2021.3063748.
O. N. Elayan and A. M. Mustafa, “Android Malware Detection Using Deep Learning,” Procedia Comput Sci, vol. 184, pp. 847–852, Jan. 2021, doi: 10.1016/j.procs.2021.03.106.
X. Pei, L. Yu, and S. Tian, “AMalNet: A deep learning framework based on graph convolutional networks for malware detection,” Comput Secur, vol. 93, p. 101792, Jun. 2020, doi:10.1016/j.cose.2020.101792.
Y. Zhang and B. Li, “Malicious Code Detection Based on Code Semantic Features,” IEEE Access, vol. 8, pp. 176728–176737, 2020, doi: 10.1109/access.2020.3026052.
Y. Ding, X. Zhang, J. Hu, and W. Xu, “Android malware detection method based on bytecode image,” Journal of Ambient Intelligence and Humanized Computing 2020, pp. 1–10, Jun. 2020, doi:10.1007/S12652-020-02196-4.
H. Jiang, T. Turki, and J. T. L. Wang, “DLGraph: Malware Detection Using Deep Learning and Graph Embedding,” Proceedings - 17th IEEE International Conference on Machine Learning and Applications, ICMLA 2018, pp. 1029–1033, Jan. 2019, doi:10.1109/icmla.2018.00168.
J. Yan, G. Yan, and D. Jin, “Classifying Malware Represented as Control Flow Graphs using Deep Graph Convolutional Neural Network,” Proceedings - 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2019, pp. 52–63, Jun. 2019, doi: 10.1109/dsn.2019.00020.
A. Alzaidi, S. Alshehri, and S. M. Buhari, “DroidRista: a highly precise static data flow analysis framework for android applications,” International Journal of Information Security 2019 19:5, vol. 19, no. 5, pp. 523–536, Oct. 2019, doi: 10.1007/S10207-019-00471-W.
W. Y. Lee, J. Saxe, and R. Harang, “SeqDroid: Obfuscated Android Malware Detection Using Stacked Convolutional and Recurrent Neural Networks,” Advanced Sciences and Technologies for Security Applications, pp. 197–210, 2019, doi: 10.1007/978-3-030-13057-2_9.
L. Zhao, D. Li, G. Zheng, and W. Shi, “Deep neural network based on android mobile malware detection system using opcode sequences,” International Conference on Communication Technology Proceedings, ICCT, vol. 2019-October, pp. 1141–1147, Jan. 2019, doi:10.1109/icct.2018.8600052.
A. Abderrahmane, G. Adnane, C. Yacine, and G. Khireddine, “Android Malware Detection Based on System Calls Analysis and CNN Classification,” 2019 IEEE Wireless Communications and Networking Conference Workshop, WCNCW 2019, Apr. 2019, doi:10.1109/wcncw.2019.8902627.
J. Zhang, Z. Qin, H. Yin, L. Ou, and K. Zhang, “A feature-hybrid malware variants detection using CNN based opcode embedding and BPNN based API embedding,” Comput Secur, vol. 84, pp. 376–392, Jul. 2019, doi: 10.1016/j.cose.2019.04.005.
T. H. De Huang and H. Y. Kao, “R2-D2: ColoR-inspired Convolutional NeuRal Network (CNN)-based AndroiD Malware Detections,” Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018, pp. 2633–2642, Jan. 2019, doi:10.1109/bigdata.2018.8622324.
Z. Xu, K. Ren, S. Qin, and F. Craciun, “CDGDroid: Android malware detection based on deep learning using CFG and DFG,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11232 LNCS, pp. 177–193, 2018, doi: 10.1007/978-3-030-02450-5_11.
C. Hasegawa and H. Iyatomi, “One-dimensional convolutional neural networks for Android malware detection,” Proceedings - 2018 IEEE 14th International Colloquium on Signal Processing and its Application, CSPA 2018, pp. 99–102, May 2018, doi:10.1109/cspa.2018.8368693.
E. M. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, “MalDozer: Automatic framework for android malware detection using deep learning,” Digit Investig, vol. 24, pp. S48–S59, Mar. 2018, doi:10.1016/j.diin.2018.01.007.
R. Nix and J. Zhang, “Classification of Android apps and malware using deep neural networks,” Proceedings of the International Joint Conference on Neural Networks, vol. 2017-May, pp. 1871–1878, 2017, doi: 10.1109/ijcnn.2017.7966078.
S. Li, Q. Zhou, and W. Wei, “Malware detection with Directed cyclic graph and weight merging,” KSII Transactions on Internet and Information Systems, vol. 15, no. 9, pp. 3258–3273, Sep. 2021, doi:10.3837/TIIS.2021.09.010.
H. Alasmary et al., “Soteria: Detecting adversarial examples in control flow graph-based malware classifiers,” Proc Int Conf Distrib Comput Syst, vol. 2020-Novem, pp. 888–898, Nov. 2020, doi:10.1109/icdcs47774.2020.00089.
A. Pektaş and T. Acarman, “Learning to detect Android malware via opcode sequences,” Neurocomputing, vol. 396, pp. 599–608, Jul. 2020, doi: 10.1016/j.neucom.2018.09.102.
A. Pektaş and T. Acarman, “Deep learning for effective Android malware detection using API call graph embeddings,” Soft Computing 2019 24:2, vol. 24, no. 2, pp. 1027–1043, Mar. 2019, doi:10.1007/S00500-019-03940-5.
A. Abusnaina, A. Khormali, H. Alasmary, J. Park, A. Anwar, and A. Mohaisen, “Adversarial learning attacks on graph-based IoT malware detection systems,” Proc Int Conf Distrib Comput Syst, vol. 2019-July, pp. 1296–1305, Jul. 2019, doi: 10.1109/icdcs.2019.00130.
M. Cheung, J. Shi, L. Jiang, O. Wright, and J. M. F. Moura, “Pooling in Graph Convolutional Neural Networks,” Conf Rec Asilomar Conf Signals Syst Comput, vol. 2019-Novem, pp. 462–466, Nov. 2019, doi:10.1109/ieeeconf44664.2019.9048796.
L. Onwuzurike, E. Mariconti, P. Andriotis, E. De Cristofaro, G. Ross, and G. Stringhini, “Mamadroid: Detecting android malware by building Markov chains of behavioral models (extended version),” ACM Transactions on Privacy and Security, vol. 22, no. 2, 2019, doi:10.1145/3313391.
M. H. Nguyen, D. Le Nguyen, X. M. Nguyen, and T. T. Quan, “Auto-detection of sophisticated malware using lazy-binding control flow graph and deep learning,” Comput Secur, vol. 76, pp. 128–155, Jul. 2018, doi: 10.1016/J.COSE.2018.02.006.