Implementation of Convolutional Neural Network and Long Short-Term Memory Algorithms in Human Activity Recognition Based on Visual Processing Video
DOI: http://dx.doi.org/10.30630/joiv.7.2.1504
Abstract
Keywords
Full Text:
PDFReferences
Żelawski, Marcin and Hachaj, Tomasz. "The application of topological data analysis to human motion recognition" International Journal Technical Transactions, vol.118, no.1, 2021, pp.-. https://doi.org/10.37705/TechTrans/e2021011
Z. Zhang, Z. Lv, C. Gan, and Q. Zhu, "Human action recognition using convolutional LSTM and fully-connected LSTM with different attentions," International Journal Neurocomputing, vol.410, pp.304–316, 2020, doi: 10.1016/j.neucom.2020.06.032.
Mokari, M., Mohammadzade, H., & Ghojogh, B. (2020). Recognizing involuntary actions from 3D skeleton data using body states. International Journal Scientia Iranica, 27(3), 1424-1436. doi: 10.24200/sci.2018.20446
K. Muhammad et al., "Human action recognition using attention based LSTM network with dilated CNN features," International Journal Future General Computing System, vol. 125, pp. 820–830, 2021, doi: 10.1016/j.future.2021.06.045.
J. Donahue et al., "Long-term Recurrent Convolutional Networks for Visual Recognition and Description," pp. 1–14, 2016.
S. U. Park, J. H. Park, M. A. Al-Masni, M. A.Al-Antari, M. Z. Uddin, and T. S. Kim, "A Depth Camera-based Human Activity Recognition via Deep Learning Recurrent Neural Network for Health and Social Care Services," Procedia Computing Science., vol. 100, pp. 78–84, 2016, doi: 10.1016/j.procs.2016.09.126.
S. Arif, J. Wang, T. Ul Hassan, and Z. Fei, "3D-CNN-based fused feature maps with LSTM applied to action recognition," Journal Future Internet, vol.11, no. 2, 2019, doi: 10.3390/fi11020042.
N. Surayahani, M. Norzali, and M. Razali, "Human Activity Recognition Based on Convolutional Neural Network," Journal International Science Technology., vol. 2018-Augus, pp. 48–57, 2018, doi: 10.1109/ICPR.2018.8545435.
S. Deep and X. Zheng, "Leveraging CNN and Transfer Learning for Vision-based Human Activity Recognition," 2019 29th International Telecommunication Networks Application Conference ITNAC 2019, pp.35–38, 2019, doi: 10.1109/ITNAC46935.2019.9078016.
Y. Zhao, K. L. Man, J. Smith, K. Siddique, and S. U. Guan, "Improved two-stream model for human action recognition," Eurasip Journal Image Video Process, vol. 2020, no. 1, 2020, doi: 10.1186/s13640-020-00501-x.
W. Xu, Y. Pang, Y. Yang, and Y. Liu, "Human Activity Recognition Based On Convolutional Neural Network," in 2018 24th International Conference on Pattern Recognition (ICPR), Aug. 2018, vol. 11742 LNAI, pp. 165–170, doi: 10.1109/ICPR.2018.8545435.
R. Mutegeki and D. S. Han, "A CNN-LSTM Approach to Human Activity Recognition," 2020 International Conference Artificial Intelligent Information Communication. ICAIIC 2020, pp. 362–366, 2020, doi: 10.1109/ICAIIC48513.2020.9065078.
Y.-C. Liu, J.-J.Ding, Y.-J. Chang, C.-Y. Wang, and J.-C. Wang, "Action recognition using three dimension convolution and long short term memory," in 2017 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-TW), Jun. 2017, pp. 83–84, doi: 10.1109/ICCE- China.2017.7991006.
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., SantamarÃa, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. "Review of deep learning: concepts, CNN architectures, challenges, applications, future directions", Journal of Big Data (Vol. 8, Issue 1). Springer International Publishing, 2021, https://doi.org/10.1186/s40537-021-00444-8
Batta, M., "Machine Learning Algorithms - A Review", International Journal of Science and Research (IJ, 9(1), 381-undefined, 2020, https://doi.org/10.21275/ART20203995
Caron, M., Bojanowski, P., Joulin, A., & Douze, M., "Deep Clustering for Unsupervised Learning of Visual Features", 2019, https://arxiv.org/abs/1807.05520
Nima, R., & Shila, F., "Crack classification in rotor-bearing system by means of wavelet transform and deep learning methods: an experimental investigation", Journal of Mechanical Engineering, Automation and Control Systems, 1(2), 102–113, 2020 https://doi.org/10.21595/jmeacs.2020.21799
Rebala, G., A, R., & S, C., "Machine Learning Definition and Basics", Springer, Cham, 2019, https://doi.org/10.1007/978-3-030-15729-6_1
Wildan, M., Aldi, P., & Aditsania, A., “Analisis dan Implementasi Long Short Term Memory Neural Network untuk Prediksi Harga Bitcoinâ€, E-Proceeding of Engineering, 5(2), 3548–3555, 2018, https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/6739
Reddy, K. K., & Shah, M., 'Recognizing 50 human action categories of web videos", Journal Machine Vision and Applications, 24(5), 971–981, 2013, https://doi.org/10.1007/s00138-012-0450-4
Ghosh, A., Sufian, A., Sultana, F., Chakrabarti, A., & De, D. "Fundamental concepts of convolutional neural network", Journal Intelligent Systems Reference Library (Vol. 172, Issue January), 2019, https://doi.org/10.1007/978-3-030-32644-9_36
François-lavet, V., Henderson, P., Islam, R., Bellemare, M. G., François-lavet, V., Pineau, J., & Bellemare, M. G. “An Introduction to Deep Reinforcement Learningâ€, Foundations and Trends in Machine Learning, II(3–4), 1–140, 2018, https://doi.org/10.1561/2200000071
Firmansyah, R., “Implementasi Deep Learning Menggunakan Convolutional Neural Network Untuk Klasifikasi Bungaâ€, Fakultas Sains Dan Teknologi UIN Syarif Hidayatullah Jakarta, 2020, https://repository.uinjkt.ac.id/dspace/handle/123456789/55347
Apaydin, H., Feizi, H., Sattari, M. T., & Colak, M. S., "Comparative Analysis of Recurrent Neural Network", Water (Switzerland), 12, 1–18, 2020, https://www.mdpi.com/2073-4441/12/5/1500
Hochreiter, S., & Schmidhuber, J., “Long Short-Term Memoryâ€. Journal Neural Computation, 9(8), 1735–1780, 1997, https://doi.org/10.1162/neco.1997.9.8.1735
Bhaskar, D., Manhart, A, Milzman, J, Nardini, J. T, Storey, K. M., Topaz, C. M., & Ziegelmeier, L. (2019). Analyzing collective motion with machine learning and topology. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(12), 123–125.
Ko, J. H., Han, D. W., & Newell, K. M. (2018). Skill level changes the coordination and variability of standing posture and movement in a pistol-aiming task. Journal of Sports Sciences, 36(7), 809–816.
Alwin Poulose, Jung Hwan Kim, Dong Seog Han, "HIT HAR: Human Image Threshing Machine for Human Activity Recognition Using Deep Learning Models", Computational Intelligence and Neuroscience, vol. 2022, Article ID 1808990, 21 pages, 2022. https://doi.org/10.1155/2022/1808990
M. Ronald, A. Poulose, and D. S. Han, "iSPLInception: an inception-ResNet deep learning architecture for human activity recognition," IEEE Access, vol. 9, pp. 68985–69001, 2021.
W. Wang, A. X. Liu, M. Shahzad, K. Ling, and S. Lu, "Device-free human activity recognition using commercial WiFi devices," IEEE Journal on Selected Areas in Communications, vol. 35, no. 5, pp. 1118–1131, 2017.
F. Wang, W. Gong, and J. Liu, "On spatial diversity in WiFi-based human activity recognition: a deep learning-based approach," IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2035–2047, 2019.
Y. Wang, J. Wu, and H. Li, "Human detection based on improved mask R-CNN," Journal of Physics: Conference Series, vol. 1575, no. 1, Article ID 012067, 2020.