Classification of Malaria Cell Image using Inception-V3 Architecture
DOI: http://dx.doi.org/10.30630/joiv.7.2.1301
Abstract
Malaria is a severe global public health problem caused by the bite of infected mosquitoes. It can be cured, but only with early detection and effective, quick treatment. It can cause severe conditions if not properly diagnosed and treated at an early stage. In the worst scenario, it can cause death. This study aims at focusing on classifying malaria cell images. Malaria is classified as a dangerous disease caused by the bite of the female Anophles mosquito. As such, it leads to mortality when immediate action and treatment fails to be administered. In particular, this study aims to classify malaria cell images by utilizing the Inception-V3 architecture. In this study, training was conducted on 27,558 malaria cell image data through Inception-V3 architecture by proposing 3 scenarios. The proposed scenario 1 model applies the SGD optimizer to generate a loss value of 0.13 and an accuracy value of 0.95; scenario 2 model applies the Adam optimizer to generate a loss value of 0.09 and an accuracy value of 0.96; and lastly scenario 3 implements the RMSprop optimizer to generate a loss value of 0.08 and an accuracy value of 0.97. Applying the three scenarios, the results of the study apparently indicate that the Inception-V3 model using the RMSprop optimizer is capable of providing the best accuracy results with an accuracy of 97% with the lowest loss value, compared to scenario 1 and scenario 2. Further, the test results confirms that the proposed model in this study is capable of classifying malaria cells effectively.
Keywords
Full Text:
PDFReferences
S. v. Militante, “Malaria Disease Recognition through Adaptive Deep Learning Models of Convolutional Neural Network,†ICETAS 2019 - 2019 6th IEEE International Conference on Engineering, Technologies and Applied Sciences, Dec. 2019, doi: 10.1109/ICETAS48360.2019.9117446.
M. M. Qanbar and S. Tasdemir, “Detection of Malaria Diseases with Residual Attention Network,†International Journal of Intelligent Systems and Applications in Engineering, vol. 7, no. 4, pp. 238–244, Dec. 2019, doi: 10.18201/ijisae.2019457677.
T. Kami, A. Zein, and M. I. Analisis, “Sainstech : Jurnal Penelitian dan Pengkajian Sains dan Teknologi Pendeteksian Penyakit Malaria Menggunakan Medical Images Analisis Dengan Deep Learning Python,†vol. 29, no. 1, pp. 28–29, 2019.
D. R. Loh, W. X. Yong, J. Yapeter, K. Subburaj, and R. Chandramohanadas, “A deep learning approach to the screening of malaria infection: Automated and rapid cell counting, object detection and instance segmentation using Mask R-CNN,†Computerized Medical Imaging and Graphics, vol. 88, p. 101845, Mar. 2021, doi: 10.1016/J.COMPMEDIMAG.2020.101845.
A. Rahman et al., “Improving Malaria Parasite Detection from Red Blood Cell using Deep Convolutional Neural Networks,†Jul. 2019, doi: 10.48550/arxiv.1907.10418.
A. Abubakar, M. Ajuji, and I. U. Yahya, “DeepFMD: Computational Analysis for Malaria Detection in Blood-Smear Images Using Deep-Learning Features,†Applied System Innovation 2021, Vol. 4, Page 82, vol. 4, no. 4, p. 82, Oct. 2021, doi: 10.3390/ASI4040082.
Y. Supranelfy and R. Oktarina, “Gambaran Perilaku Pencegahan Penyakit Malaria di Sumatera Selatan (Analisis Lanjut Riskesdas 2018),†Balaba: Jurnal Litbang Pengendalian Penyakit Bersumber Binatang Banjarnegara, pp. 19–28, 2021, doi: 10.22435/blb.v17i1.3556.
A. Sai Bharadwaj Reddy and D. Sujitha Juliet, “Transfer learning with RESNET-50 for malaria cell-image classification,†Proceedings of the 2019 IEEE International Conference on Communication and Signal Processing, ICCSP 2019, no. April 2019, pp. 945–949, 2019, doi: 10.1109/ICCSP.2019.8697909.
M. Masud et al., “Leveraging Deep Learning Techniques for Malaria Parasite Detection Using Mobile Application,†Wirel Commun Mob Comput, vol. 2020, 2020, doi: 10.1155/2020/8895429.
A. Q. M. S. Sayyed, D. Saha, A. R. Hossain, and C. Shahnaz, “Effectiveness of Convolutional and Capsule network in Malaria Parasite Detection,†2019 IEEE International Conference on Signal Processing, Information, Communication and Systems, SPICSCON 2019, pp. 68–73, Nov. 2019, doi: 10.1109/SPICSCON48833.2019.9065074.
M. H. D. Alnussairi and A. A. İbrahim, “Malaria parasite detection using deep learning algorithms based on (CNNs) technique,†Computers and Electrical Engineering, vol. 103, p. 108316, Oct. 2022, doi: 10.1016/J.COMPELECENG.2022.108316.
K. K. Jena, S. Kumar Bhoi, C. Mallick, D. Mohapatra, and P. Swain, “Classification of Malaria Parasitized and Uninfected Images Using Machine Learning Approach,†Proceedings of the 5th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), I-SMAC 2021, pp. 1274–1279, 2021, doi: 10.1109/I-SMAC52330.2021.9640905.
W. R. W. M. Razin, T. S. Gunawan, M. Kartiwi, and N. Md. Yusoff, “Malaria Parasite Detection and Classification using CNN and YOLOv5 Architectures,†pp. 277–281, Nov. 2022, doi: 10.1109/ICSIMA55652.2022.9928992.
W. Deelder et al., “Using deep learning to identify recent positive selection in malaria parasite sequence data,†Malar J, vol. 20, no. 1, pp. 1–9, Dec. 2021, doi: 10.1186/S12936-021-03788-X/TABLES/3.
M. O. Arowolo, M. Adebiyi, A. Adebiyi, and O. Okesola, “PCA Model for RNA-Seq Malaria Vector Data Classification Using KNN and Decision Tree Algorithm,†2020 International Conference in Mathematics, Computer Engineering and Computer Science, ICMCECS 2020, Mar. 2020, doi: 10.1109/ICMCECS47690.2020.240881.
K. M. F. Fuhad, J. F. Tuba, M. R. A. Sarker, S. Momen, N. Mohammed, and T. Rahman, “Deep Learning Based Automatic Malaria Parasite Detection from Blood Smear and Its Smartphone Based Application,†Diagnostics 2020, Vol. 10, Page 329, vol. 10, no. 5, p. 329, May 2020, doi: 10.3390/DIAGNOSTICS10050329.
G. Comert, N. Begashaw, and A. Turhan-Comert, “Malaria Outbreak Detection with Machine Learning Methods,†bioRxiv, p. 2020.07.21.214213, Jul. 2020, doi: 10.1101/2020.07.21.214213.
O. Nkiruka, R. Prasad, and O. Clement, “Prediction of malaria incidence using climate variability and machine learning,†Inform Med Unlocked, vol. 22, p. 100508, Jan. 2021, doi: 10.1016/J.IMU.2020.100508.
Y. W. Lee, J. W. Choi, and E. H. Shin, “Machine learning model for predicting malaria using clinical information,†Comput Biol Med, vol. 129, p. 104151, Feb. 2021, doi: 10.1016/J.COMPBIOMED.2020.104151.
A. Q. M. S. Sayyed, D. Saha, A. R. Hossain, and C. Shahnaz, “Effectiveness of Convolutional and Capsule network in Malaria Parasite Detection,†2019 IEEE International Conference on Signal Processing, Information, Communication and Systems, SPICSCON 2019, no. November, pp. 68–73, 2019, doi: 10.1109/SPICSCON48833.2019.9065074.
L. A. Andika, H. Pratiwi, and S. S. Handajani, “Lingga Aji Andika 1 , Hasih Pratiwi 2 , and Sri Sulistijowati Handajani 3 1,†Indonesian Journal of Statistics and Its Applications, vol. 3, no. 3, pp. 331–340, 2019.
K. Sriporn, C. F. Tsai, C. E. Tsai, and P. Wang, “Analyzing Malaria Disease Using Effective Deep Learning Approach,†Diagnostics 2020, Vol. 10, Page 744, vol. 10, no. 10, p. 744, Sep. 2020, doi: 10.3390/DIAGNOSTICS10100744.
M. Suriya, V. Chandran, and M. G. Sumithra, “Enhanced deep convolutional neural network for malarial parasite classification,†International Journal of Computers and Applications, vol. 0, no. 0, pp. 1–10, 2019, doi: 10.1080/1206212X.2019.1672277.
“Cell Image Malaria Dataset Available : https://www.kaggle.com/iarunava/cell- images-for-detecting-malaria.â€.
“NIH: Cell Image Malaria Dataset Available :https://ceb.nlm.nih.gov/repositories/malaria- datasets/â€.
A. Rahman, H. Zunair, T. R. Reme, M. S. Rahman, and M. R. C. Mahdy, “A comparative analysis of deep learning architectures on high variation malaria parasite classification dataset,†Tissue Cell, vol. 69, p. 101473, Apr. 2021, doi: 10.1016/J.TICE.2020.101473.
M. Harahap, J. Jefferson, S. Barti, S. Samosir, and C. A. Turnip, “Implementation of Convolutional Neural Network in the classification of red blood cells have affected of malaria,†SinkrOn, vol. 5, no. 2, pp. 199–207, 2020, doi: 10.33395/sinkron.v5i2.10713.
S. D. H. Permana, G. Saputra, B. Arifitama, Yaddarabullah, W. Caesarendra, and R. Rahim, “Classification of bird sounds as an early warning method of forest fires using Convolutional Neural Network (CNN) algorithm,†Journal of King Saud University - Computer and Information Sciences, no. xxxx, 2021, doi: 10.1016/j.jksuci.2021.04.013.
Z. Liang et al., “CNN-based image analysis for malaria diagnosis,†Proceedings - 2016 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2016, pp. 493–496, 2017, doi: 10.1109/BIBM.2016.7822567.
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception Architecture for Computer Vision,†Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2016-December, pp. 2818–2826, Dec. 2016, doi: 10.1109/CVPR.2016.308.
I. K. A. Wirayasa, “Comparison of Convolutional Neural Networks Model Using Different Optimizers for Image Classification International Journal of Sciences : Comparison of Convolutional Neural Networks Model Using Different Optimizers for Image Classification,†no. September, 2021.
Y. Bhatia, A. Bajpayee, D. Raghuvanshi, and H. Mittal, “v2 and Recurrent Neural Network,†2019 Twelfth International Conference on Contemporary Computing (IC3), pp. 1–6, 2019.
D. Shah, K. Kawale, M. Shah, S. Randive, and R. Mapari, “Malaria Parasite Detection Using Deep Learning: (Beneficial to humankind),†Proceedings of the International Conference on Intelligent Computing and Control Systems, ICICCS 2020, no. Iciccs, pp. 984–988, 2020, doi: 10.1109/ICICCS48265.2020.9121073.
A. Sai Bharadwaj Reddy and D. Sujitha Juliet, “Transfer learning with RESNET-50 for malaria cell-image classification,†Proceedings of the 2019 IEEE International Conference on Communication and Signal Processing, ICCSP 2019, pp. 945–949, Apr. 2019, doi: 10.1109/ICCSP.2019.8697909.