Determining the Rice Seeds Quality Using Convolutional Neural Network
DOI: http://dx.doi.org/10.30630/joiv.7.2.1175
Abstract
Keywords
Full Text:
PDFReferences
I. Chatnuntawech, K. Tantisantisom, P. Khanchaitit, T. Boonkoom, B. Bilgic, and E. Chuangsuwanich, “Rice Classification Using Spatio-Spectral Deep Convolutional Neural Network,†Comput. Vis. Pattern Recognit. Cornell Univ., vol. 3, no. 1, pp. 1–22, 2018, [Online]. Available: http://arxiv.org/abs/1805.11491.
K. Kiratiratanapruk et al., “Development of Paddy Rice Seed Classification Process using Machine Learning Techniques for Automatic Grading Machine,†J. Sensors, vol. 2020, 2020, doi: 10.1155/2020/7041310.
S. D. Fabiyi et al., “Varietal Classification of Rice Seeds Using RGB and Hyperspectral Images,†IEEE Access, vol. 8, no. 1, pp. 22493–22505, 2020, doi: 10.1109/ACCESS.2020.2969847.
J. Gupta and Neelam, “Identification and Classification of Rice varieties using Mahalanobis Distance by Computer Vision,†Int. J. Sci. Res. Publ., vol. 5, no. 5, pp. 1–6, 2015.
D. Joshi et al., “Label-free non-invasive classification of rice seeds using optical coherence tomography assisted with deep neural network,†Opt. Laser Technol., vol. 137, no. January, p. 106861, 2021, doi: 10.1016/j.optlastec.2020.106861.
M. M. Tin, K. L. Mon, E. P. Win, and S. S. Hlaing, “Myanmar Rice Grain Classification Using Image Processing Techniques,†Adv. Intell. Syst. Comput., vol. 744, pp. 324–332, 2019, doi: 10.1007/978-981-13-0869-7_36.
Z. Y. Liu, F. Cheng, Y. Bin Ying, and X. Q. Rao, “Identification of rice seed varieties using neural network,†J. Zhejiang Univ. Sci., vol. 6 B, no. 11, pp. 1095–1100, 2005, doi: 10.1631/jzus.2005.B1095.
Y. Ogawa, Quality Evaluation of Rice, Second Edi. Elsevier Inc., 2016.
P. R. Armstrong et al., “Detection of chalk in single kernels of long-grain milled rice using imaging and visible/near-infrared instruments,†Cereal Chem., vol. 96, no. 6, pp. 1103–1111, 2019, doi: 10.1002/cche.10220.
T. Ahmed, C. R. Rahman, and M. F. M. Abid, “RICE GRAIN DISEASE IDENTIFICATION USING DUAL PHASE CONVOLUTIONAL NEURAL NETWORK BASED SYSTEM AIMED AT SMALL DATASET,†agriRxiv, vol. 2021, no. 1, pp. 1–14, 2021, doi: 10.31220/agrirxiv.2021.00062.
P. Mookdarsanit and L. Mookdarsanit, “PhosopNet: An improved grain localization and classification by image augmentation,†Telkomnika (Telecommunication Comput. Electron. Control., vol. 19, no. 2, pp. 479–490, 2021, doi: 10.12928/TELKOMNIKA.v19i2.18321.
Y. Toda et al., “Training instance segmentation neural network with synthetic datasets for crop seed phenotyping,†Commun. Biol., vol. 3, no. 1, pp. 1–12, 2020, doi: 10.1038/s42003-020-0905-5.
M. Uddin, M. A. Islam, M. Shajalal, M. A. Hossain, and M. S. I. Yousuf, “Paddy seed variety identification using T20-HOG and Haralick textural features,†Complex Intell. Syst., vol. 8, no. 1, pp. 657–671, 2022, doi: 10.1007/s40747-021-00545-0.
P. T. T. Hong, T. T. T. Hai, L. T. Lan, V. T. Hoang, V. Hai, and T. T. Nguyen, “Comparative Study on Vision Based Rice Seed Varieties Identification,†Proc. - 2015 IEEE Int. Conf. Knowl. Syst. Eng. KSE 2015, pp. 377–382, 2015, doi: 10.1109/KSE.2015.46.
B. Lurstwut and C. Pornpanomchai, “Image analysis based on color, shape and texture for rice seed (Oryza sativa L.) germination evaluation,†Agric. Nat. Resour., vol. 51, no. 5, pp. 383–389, 2017, doi: 10.1016/j.anres.2017.12.002.
A. A. Aznan, R. Ruslan, I. H. Rukunudin, F. A. Azizan, and A. Y. Hashim, “Rice seed varieties identification based on extracted colour features using image processing and artificial neural network (ANN),†Int. J. Adv. Sci. Eng. Inf. Technol., vol. 7, no. 6, pp. 2220–2225, 2017, doi: 10.18517/ijaseit.7.6.2990.
H. Nguyen-Quoc and V. T. Hoang, “Rice seed image classification based on HOG descriptor with missing values imputation,†Telkomnika (Telecommunication Comput. Electron. Control., vol. 18, no. 4, pp. 1897–1903, 2020, doi: 10.12928/telkomnika.v18i4.14069.
K. Aukkapinyo, S. Sawangwong, P. Pooyoi, and W. Kusakunniran, “Localization and Classification of Rice-grain Images Using Region Proposals-based Convolutional Neural Network,†Int. J. Autom. Comput., vol. 17, no. 2, pp. 233–246, 2020, doi: 10.1007/s11633-019-1207-6.
S. Kido, Y. Hirano, and N. Hashimoto, “Detection and classification of lung abnormalities by use of convolutional neural network (CNN) and regions with CNN features (R-CNN),†2018 Int. Work. Adv. Image Technol. IWAIT 2018, pp. 1–4, 2018, doi: 10.1109/IWAIT.2018.8369798.
Kurnianingsih et al., “Segmentation and Classification of Cervical Cells Using Deep Learning,†IEEE Access, vol. 7, no. 1, pp. 116925–116941, 2019, doi: 10.1109/ACCESS.2019.2936017.
B. Zhao, J. Feng, X. Wu, and S. Yan, “A Survey on Deep Learning-based Fine-grained Object Classification and Semantic Segmentation,†Int. J. Autom. Comput., vol. 14, no. 2, pp. 119–135, 2017, doi: 10.1007/s11633-017-1053-3.
J. G. A. Barbedo, “Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification,†Elsevier Comput. Electron. Agric., vol. 153, no. July, pp. 46–53, 2018, doi: 10.1016/j.compag.2018.08.013.
F. Chollet, “Xception: Deep learning with depthwise separable convolutions,†Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, no. 1, pp. 1800–1807, 2017, doi: 10.1109/CVPR.2017.195.
C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,†J. Big Data, vol. 6, no. 1, 2019, doi: 10.1186/s40537-019-0197-0.
A. R. Pazoki, F. Farokhi, and Z. Pazoki, “Classification Of Rice Grain Varieties Using Two Artificial Neural Networks (MLP And Neuro-Fuzzy),†J. Anim. Plant Sci., vol. 24, no. 1, pp. 336–343, 2014.
W. Liu, S. Zeng, G. Wu, H. Li, and F. Chen, “Rice seed purity identification technology using hyperspectral image with lasso logistic regression model,†Sensors, vol. 21, no. 13, p. 4384, 2021, doi: 10.3390/s21134384.
B. Filipović, V., Panić, M., Brdar, S., & BrkljaÄ, “Significance of Morphological Features in Rice Variety Classification Using Hyperspectral Imaging,†Int. Symp. Image Signal Process. Anal., vol. IEEE, pp. 171–176, 2021, doi: 10.1109/ISPA52656.2021.9552086.
S. Qadri et al., “Machine vision approach for classification of rice arieties using texture features,†Int. J. Food Prop., vol. 24, no. 1, pp. 1615–1630, 2021, doi: 10.1080/10942912.2021.1986523.
Y. Hamid, S. Wani, A. B. Soomro, A. A. Alwan, and Y. Gulzar, “Smart seed classification system based on MobileNetV2 architecture,†in 2022 2nd International Conference on Computing and Information Technology (ICCIT), 2022, pp. 217–222, doi: 10.1109/ICCIT52419.2022.9711662.
N. A. Mohidem, N. Hashim, R. Shamsudin, and H. Che Man, “Rice for food security: Revisiting its production, diversity, rice milling process and nutrient content,†Agriculture, vol. 12, no. 6, p. 741, 2022, doi: 10.3390/agriculture12060741.