Neural Network for Earthquake Prediction Based on Automatic Clustering in Indonesia
DOI: http://dx.doi.org/10.30630/joiv.2.1.106
Abstract
Keywords
Full Text:
PDFReferences
Georgoulas, G., A. Konstantaras, E. Katsifarakis, C.D. Stylios, E. Maravelakis, and G.J.Vachtsevanos. Seismic-mass Density-based Algorithm for Spatio-temporal Clustering. Expert Systems with Applications. 2013; 40(10): 4183-4189
Alvarez, R. J., J. C. Echeverria, A. Ortiz-Cruz, and E. Hernandez. Temporal and Spatial Variations of Seismicity Scaling Behavior in Southern México. Journal of Geodynamics. 2012; 54:1-12.
Ales, S., and Jirà Vanek. Earthquake Clustering in the Tectonic Pattern and Volcanism of the Andaman Sea Region. Tectonophysics. 2013; 608: 728-736.
C.R. Allen, Responsibilities in Earthquake Prediction. Bulletin of the Seismological Society of America. 1982; 66(6): 2069–2074.
E.I. Alves. Earthquake Forecasting using Neural Networks: Results Future Work. Nonlinear Dynamics. 2006; 44(1–4): 341–349.
H. Adelli and K. Panakkat. A Probabilistic Neural Network for Earthquake Magnitude Prediction. Neural Network. 2009; 22(7): 1018-1024.
J. Reyes, A. Morales-Esteban, and F. MartÃnez-Ãlvarez. Neural Networks to Predict Earthquakes in Chile. Applied Soft Computing. 2013; 13(2): 1314–1328.
A. Morales-Esteban, F. MartÃnez-Ãlvarez, S. Scitovski, R. Scitovski. A Fast Partitioning Algorithm using Adaptive Mahalanobis Clustering with Application to Seismic Zoning. Computers & Geosciences. 2014; 73: 132-141.
A.R. Barakbah and K. Arai. Determining Constraints of Moving Variance to Find Global Optimum and Make Automatic Clustering. Industrial Electronics Seminar (IES). Surabaya. 2004: 409-413.
A.R. Barakbah and K. Arai. Reserved Pattern of Moving Variance for Accelerating Automatic Clustering. EEPIS Journal. 2004; 2(9): 15-21.
M.N. Shodiq, A. R. Barakbah, T. Harsono. Spatial Analysis of Earthquake Distribution with Automatic Clustering for Prediction of Earthquake Seismicity in Indonesia. The Fourth Indonesian-Japanese Conference on Knowledge Creation and Intelligent Computing (KCIC). Surabaya/Bali. 2015: 47-55.
D.A. Yuen, J.K. Benamin, F. B. Evan, W. Dzwinel, A.G. Zachary, and R.S. Cesar. Clustering and Visualization of Earthquake Data in a Grid Environment. Visual Geoscience. 2005; 10(1): 1-12
K. Arai and A.R. Barakbah. Hierarchical K-means: an Algorithm for Centroids Initialization for K-means. Reports of the Faculty of Science and Engineering, Saga University, Japan. 2007: 36(1).
A. Zamani and R.M. Sorbi. Application of Neural Network and ANFIS Model for Earthquake Occurrence in Iran. Earth Science Informatics. 2013; 6(2): 71-85.
A. Morales-Esteban, F. MartÃnez-Ãlvarez, J. Reyes. Earthquake prediction in seismogenic areas of the Iberian Peninsula based on computational intelligence. Tectonophysics. 2013; 593: 121–134
M.N. Shodiq, A.R. Barakbah, T. Harsono. Cluster Oriented Spatio Temporal Multidimensional Data Visualization of Earthquake in Indonesia. International Journal of Engineering Technology (EMITTER). 2015; 3(1): 53-67.