Introversion-Extraversion Prediction using Machine Learning
DOI: http://dx.doi.org/10.62527/joiv.7.4.1019
Abstract
Keywords
Full Text:
PDFReferences
R. M. Bergner, “What is personality? Two myths and a definition,” New Ideas Psychol., vol. 57, 2020, doi: 10.1016/j.newideapsych.2019.100759.
P. G. Zimbardo, R. L. Johnson, and V. McCann, Psychology : core concepts, 8th ed. NY: Pearson, 2017.
C. D. Nye and B. W. Roberts, A neo-socioanalytic model of personality development. Elsevier Inc., 2019.
A. Baumert et al., “Integrating Personality Structure, Personality Process, and Personality Development,” European Journal of Personality, vol. 31, no. 5, pp. 503–528, Sep. 2017, doi: 10.1002/per.2115.
D. Petric, “Introvert , Extrovert and Ambivert,” Knot Theory Mind, no. September, pp. 1–4, 2019, doi: 10.13140/RG.2.2.28059.41764/2.
M. C. Shehni and T. Khezrab, “Review of Literature on Learners’ Personality in Language Learning: Focusing on Extrovert and Introvert Learners,” Theory and Practice in Language Studies, vol. 10, no. 11, p. 1478, Nov. 2020, doi: 10.17507/tpls.1011.20.
Y. Tao, Y. Cai, C. Rana, and Y. Zhong, “The impact of the Extraversion-Introversion personality traits and emotions in a moral decision-making task,” Personality and Individual Differences, vol. 158, p. 109840, May 2020, doi: 10.1016/j.paid.2020.109840.
A. M. Grant, F. Gino, and D. A. Hofmann, “Reversing the Extraverted Leadership Advantage: The Role of Employee Proactivity,” Academy of Management Journal, vol. 54, no. 3, pp. 528–550, Jun. 2011, doi: 10.5465/amj.2011.61968043.
J. E. Bono and T. A. Judge, “Personality and Transformational and Transactional Leadership: A Meta-Analysis.,” Journal of Applied Psychology, vol. 89, no. 5, pp. 901–910, 2004, doi: 10.1037/0021-9010.89.5.901.
C. So, “Are You an Introvert or Extrovert? Accurate Classification With Only Ten Predictors,” 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Feb. 2020, doi: 10.1109/icaiic48513.2020.9065069.
H. Baumgartl, S. Bayerlein, and R. Buettner, “Measuring Extraversion Using EEG Data,” Lecture Notes in Information Systems and Organisation, pp. 259–265, 2020, doi: 10.1007/978-3-030-60073-0_30.
L. Ge, H. Tang, Q. Zhou, Y. Tang, and J. Lang, “Classification Algorithms to Predict Students’ Extraversion-Introversion Traits,” 2016 International Conference on Cyberworlds (CW), Sep. 2016, doi: 10.1109/cw.2016.27.
S. M. Anzalone, G. Varni, S. Ivaldi, and M. Chetouani, “Automated Prediction of Extraversion During Human–Humanoid Interaction,” International Journal of Social Robotics, vol. 9, no. 3, pp. 385–399, Feb. 2017, doi: 10.1007/s12369-017-0399-6.
Open-Source Psychometrics Project, “Development of the Multidimensional Introversion-Extraversion Scales.” 2019.
J. Tanha, Y. Abdi, N. Samadi, N. Razzaghi, and M. Asadpour, “Boosting methods for multi-class imbalanced data classification: an experimental review,” Journal of Big Data, vol. 7, no. 1, Sep. 2020, doi: 10.1186/s40537-020-00349-y.
R. Mohammed, J. Rawashdeh, and M. Abdullah, “Machine Learning with Oversampling and Undersampling Techniques: Overview Study and Experimental Results,” 2020 11th International Conference on Information and Communication Systems (ICICS), Apr. 2020, doi: 10.1109/icics49469.2020.239556.
V. S. Spelmen and R. Porkodi, “A Review on Handling Imbalanced Data,” 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT), Mar. 2018, doi:10.1109/icctct.2018.8551020.
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: Synthetic minority over-sampling technique,” J. Artif. Intell. Res., vol. 16, no. September 28, pp. 321–357, 2002, [Online]. Available: https://arxiv.org/pdf/1106.1813.pdf%0Ahttp://www.snopes.com/horrors/insects/telamonia.asp.
H. He, Y. Bai, E. Garcia, and S. Li, “ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In IEEE International Joint Conference on Neural Networks, 2008,” IJCNN 2008.(IEEE World Congr. Comput. Intell. (pp. 1322– 1328), no. 3, pp. 1322– 1328, 2008.
T. Lu, Y. Huang, W. Zhao, and J. Zhang, “The Metering Automation System based Intrusion Detection Using Random Forest Classifier with SMOTE+ENN,” 2019 IEEE 7th International Conference on Computer Science and Network Technology (ICCSNT), Oct. 2019, doi: 10.1109/iccsnt47585.2019.8962430.
H. Zhu, X. You, and S. Liu, “Multiple Ant Colony Optimization Based on Pearson Correlation Coefficient,” IEEE Access, vol. 7, pp. 61628–61638, 2019, doi: 10.1109/access.2019.2915673.