














The Bi-LSTM model has the best performance evaluation 

results, with an overall accuracy of 99.44% and an f1-score of 

99.51%. Which of these models performs better than the 

results of each of the previous models, where the dataset used 

is simpler than the data used in this study. The results of this 

study are promising to be applied to the aviation industry 

because the ADS-B device can be used as a backup radar in 

monitoring and detecting aircraft movement anomalies. In 

addition, for future research, the model can be implemented 

on ADS-B monitoring server to generate reports as material 

for aircraft technician studies to make decisions about the 
feasibility of the aircraft on the next flight in preventing and 

reducing the rate of aircraft accidents. The dataset in this 

study can be accessed for future comparison studies on the 

Flightradar24 community server. 
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