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Abstract—Human-computer interaction (HCI) is a field of study studying how people and computers interact. One of the most critical 

branches of HCI is hand gesture recognition, with most research concentrating on a single direction. A slight change in the angle of 

hand gestures might cause the motion to be misclassified, thereby degrading the performance of hand gesture detection. Therefore, to 

improve the accuracy of hand gesture detection, this paper focuses on analyzing hand gestures based on the reflected signals from two 

directions, which are front and side views. The radar system employed in this paper is equipped with two sets of 24 GHz continuous 

wave (CW) monostatic radar sensors with a sampling rate of 44.1 kHz. Four different hand gestures, namely close hand, open hand, 

OK sign, and pointing down, are collected using SignalViewer software. The data is stored as a waveform audio file format (WAV) 

where one data consists of 20 segments, and the data is then examined by using MATLAB software to be segmented. To evaluate the 

effectiveness of the classification system, principal component analysis (PCA) and k-nearest neighbor (KNN) are integrated. The PCA 

findings are depicted in Pareto and 2-D scatter plot for both radar directions. The Leave-One-Out (LOO) method is then used in this 

analysis to verify the accuracy of the classification method, which is represented in the confusion matrix. At the end of the analysis, the 

classification results indicated that both angles achieved near-perfect accuracy for most hand gestures. 
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I. INTRODUCTION 

Human-computer interaction (HCI) is a field of study that 

focuses on how humans and computers interact. This field of 

study is critical to understanding human gestures since it is an 

important form of human communication that occurs without 

physical contact and contributes to the development of the 

human language. Hand gesture recognition is a critical 

component of HCI. Understanding human hand gestures are 
critical in light of technological advancement. It has been 

demonstrated to be beneficial in a variety of fields, including 

computer gaming and electronic device control. Human hand 

gestures also benefit medical research, as they were 

previously used to study hand gestures used to assist stroke 

victims [1], [2].  

This technology has become ingrained in daily life due to 
its ability to facilitate non-physical interaction between 

humans and electronic devices. Human hand gestures have 

been studied as an interface for human-machine interaction 

over the past years. The methods of acquiring hand gestures 

are divided into three types: vision, sensor, and radar-based 

approaches. For the sensor-based method, the sensor will be 

mounted on a wearable device which can cause discomfort 

and inconvenience to the user [3]-[8]. In contrast, the vision-

based method that uses camera images performs well but is 

susceptible to illumination and occlusion [9]-[16]. On the 

other hand, the radar-based method that analyzes the 
information of the reflected signal by hand is contactless and 

does not require images. The current human gesture 

recognition using radar technologies is blooming and 

improving every year with the help of the Artificial 
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Intelligence (AI) deep learning features and other machine 

learning algorithms. 

Several types of radar were employed in hand gesture 

recognition projects, such as the Doppler radar [17]-[27]. Due 

to the advancement in radio frequency (RF) technology, the 

inexpensive Doppler radar sensor is becoming more common. 

The hand gesture's velocity data can be determined by 

Doppler radar using the Doppler effects. The Micro-Doppler 

signature of the hand motions is obtained from the reflected 

signal without the range information [18]. However, when 

several scatter such as fingers, appear in the detection path, 
they are represented as overlapping signatures in the time-

frequency domain. Thus, a detailed investigation is required 

to distinguish revealing signatures associated with gestures.  

An alternative such as continuous wave (CW) radar also 

was used in past studies with different techniques employed. 

CW radar is suitable for hand gesture recognition because its 

performance does affect by the stationary object. In hand 

gesture recognition, the hand is the only moving part targeted 

by the radar, and the range and distance information are not 

necessarily significant depending on the selected gestures. 

The authors in Bannon et al. [28] presented a simple, 
extremely low-cost integrated CW radar module for human 

hand gesture recognition. In the same experimental setup, 

slightly higher classification accuracy is achieved using CW 

radar than the frequency modulated continuous wave (FMCW) 

radar. 

Numerous techniques have been practiced in the past 

studies based on deep learning and machine learning for hand 

gestures recognition and classification. The deep learning 

approach requires the predefined characteristics parameter or 

features because neural networks can learn the features 

independently from an input signal during the training process. 
In [29], the author proposed the convolutional neural network 

(CNN) as the classifier and utilized a 3-dimensional (3D) 

tensor consisting of a Range-Doppler frame sequence as the 

data to train the neural network. The drawback of deep 

learning is that it requires many samples or datasets. Deep 

learning also needed a powerful graphics processing unit 

(GPU) to speed up the learning time of the neural network. 

On the other hand, the machine learning approach required 

specific predefined characteristics parameters or features to 

be extracted from the raw signals to be used as data for the 

classification by the algorithm. These predefined 

characteristic parameters or features can be extracted using 
Unsupervised Machine Learning such as principal component 

analysis (PCA) [30], [31]. Sun et al. [32] employed k-nearest 

neighbors (KNN) and proposed five micro-Doppler-based 

handcrafted features for classification. The results in this 

study achieved good recognition accuracy despite the hand 

gestures samples mainly in the axial direction. 

The development of hand gesture recognition combining 

radar and classification algorithms has improved and 

progressed so much in the last decade. As a result, a technique 

such as converting trajectory images to low-resolution joint 

photographic experts’ group (JPEG) images to train the neural 
network was proposed [33]. However, the existing system is 

considered mature and focuses only on one angle of detection, 

and thus, the advancement of the systems has almost become 

stagnant. It is an excellent initiative to explore different 

strategies that can benefit and complement the existing 

solutions. 

Hence, this paper explores using two 24 GHz CW radar 

sensors with two transceivers. The captured signals are 

analyzed using MATLAB software, and the classification is 

performed by combining the PCA and KNN methods to study 

and analyze the effects of signals from two different angles, 

from the front and side of detection in hand gesture 

classification using machine learning. 

II. MATERIAL AND METHOD 

The whole process of recognizing the radar-based deaf sign 

language is shown in Fig. 1. It includes hand gesture 

acquisition, gesture signal processing, feature extraction, 

segmentation, and classification of deaf sign language. The 

classification is performed on two types of input features: 

original and segmented spectrogram of gesture signals.  

The CW radar signals collected in this study are pre-

processed to achieve high classification accuracy. Two radar 
modules are used to collect a target's scattered signal from two 

different directions, the front and left sides. Each radar 

produces in-phase (I) and quadrature (Q) components. Time-

domain output signals are generated using MATLAB 

software coding and syntax. 

These unprocessed time-domain signals are sampled. To 

reduce the computation time required by PCA and KNN, only 

signals containing the desired movement are extracted from 

the original raw time-domain signals. This PCA employs four 

Principal Component markers and generates a 2-dimensional 

(2D) scatter plot of the hand gesture types. Finally, the KNN 

classifier is used to classify both front and left-hand gesture 
signals. 

 
Fig. 1  General block diagram of the data classification process 

A. Experimental Setup and Configuration 

The experimental setup of the radars used in this 

experiment is shown in Fig. 2. This experiment uses two 

active RF beam radar modules, ST100 Starter kit, with a 24 

GHz operating frequency. The radar is comprised of a 

transceiver that can transmit and receive RF signals in an 
antenna. Each radar generates the I and Q components of the 

reflected hand gestures. These two components are acquired 

at a sampling rate of 44.1 kHz from the radar. The resulting 

spectrum has a maximum Doppler frequency component of 

2.2 kHz, depending on the sampling rate. One of the radars is 

placed on the front side (labeled as A), facing the participant, 

and collecting the scattered signal from the front view of the 

hand gesture, while the other one is placed on the left side 

(labeled as B), collecting the scattered signal from the side 

view of the hand gesture. Both radars are placed 

perpendicularly to each other, with a distance to the 

participant's hand of 25 cm (labeled as O). The radars are 
lifted above the table's surface by approximately 5 cm to avoid 

the signal being reflected from the table. The participants are 

provided with a chair to be seated and perform appropriate 

hand gestures. Due to the small size of the room used in this 

experiment, approximately 100 ft2, there may have been some 
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interference in the reflected signal caused by the moving 

person. However, these circumstances provide a more 

realistic outcome for the collected hand gesture samples. 

 

 
Fig. 2  The experimental setup 

B. Data Acquisition 

The ST100 Starter kit includes a SignalViewer software 

interface, as shown in Fig. 3, for real-time viewing and 
analysis of Doppler signals. The software records the 

scattered signals from the radar and saves the signals in a 

waveform audio file format (WAV). The division of the y-

axis that represents the voltage of the graph is set to be 0.5 

V/div, while the x-axis that represents the time is set to be 2 

ms/div. 

 

 
Fig. 3  The SignalViewer software interface 

 

As shown in Table I, four distinct right-handed hand 
gestures are collected for this experiment. Those gestures 

represent common hand movements that participants can 

perform. The following types of hand gestures are chosen for 

this study: 

 Close hand, 

 Open hand, 

 OK sign, 

 Pointing down. 

Ten male participants are involved in this experiment for 

data collection, with a range of ages between 19 and 24 years 

old. Each participant repeated each hand gesture type ten 

times throughout the session with a delay of approximately 

two seconds. Thus, 400 data points on hand gestures are 

gathered using a single radar or one-sided sensor. The total 

number of hand gesture samples collected for both radars is 

800 data. Prior to the data collection process, all participants 

were demonstrated an example of each hand gesture type. 

Then they performed the hand gestures freely at their own 

pace and style. By doing so, the data used in the neural 

network learning process is more diverse. 

One WAV file is generated for a participant after 

performing a gesture in ten repetitions per session. Thus, a 
total of 80 WAV files are collected for both radars containing 

800 data of hand gesture signals from ten participants. 

TABLE I 

HAND GESTURE TYPES 

Type Appearance 

Close hand 

 
Open hand 

 
OK sign 

 
Pointing down 

 
 
 
 
 

 

C. Data Processing 

Fig. 4 shows the block diagram of the data processing, 

which starts with loading and reading the raw data (WAV 

format) using MATLAB software. The raw signal in WAV 

format contains 20 segments of the hand gesture, as shown in 

Fig. 5, which represents ten hand gestures, including the 

initial position. The signals are then manually extracted using 

the Signal Analyzer application, and only one segment 

containing the hand gesture Doppler is selected to be analyzed 

while the noise and other interference are ignored, as shown 
in Fig. 6. 

The time-domain segmented signal is then transformed into 

a frequency-domain signal by using the fast Fourier transform 

(FFT) technique to comprehend the frequency information of 

the signal. The frequency-domain signal is then transformed 

into a power spectral density (PSD) signal, and the amplitude 

is normalized to one, bringing all the variables into the same 

range while simplifying the signal to be analyzed for the 

propose of features selection. 

PSD signals can be used directly as neural network inputs. 

However, due to the high dimensional of the data, the 

classification result is not optimal. Apart from that, the 
number of features is comparable to the length of the overall 
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signal. The computational time will be increased as a result of 

the over-fitting problem. Thus, by exploiting the correlation 

between the features, the principal components analysis (PCA) 

is used to reduce the dimensional of the spectra feature vector. 

It is important to select an appropriate feature rather than a 

large number of them, as many features do not always yield 

satisfactory results in machine learning. The output of PCA is 

then will be used as either training or testing data in the 

classification system. 

 

 
Fig. 4  The block diagram of data processing 

 

 
Fig. 5  Raw signal for segmentation process 

 

 
Fig. 6  Signal Analyzer application 

D. Data Classification 

The KNN algorithm is a form of Supervised Learning that 

is frequently used in classification and regression. 

Additionally, KNN is a flexible algorithm capable of 

resampling datasets and imputing missing values. Typically, 

classification system data is divided into training and testing 

sets. However, due to the small number of samples in this 
experiment, all hand gesture signals are classified as training 

data. The number of nearest neighbors, k is three, while the 

remaining parameters remain unchanged. 

As a result of the foregoing, the Leave-One-Out (LOO) 

method is used to verify the classification accuracy of KNN. 

This method is better with a small database because only one 

hand gesture signal is used as the testing datasets at a time, 

while the remaining hand gesture signals are used as the 

training datasets. As a result, the training data outnumber the 

testing data by 399:1 in the LOO method for the front or left 

side datasets at a time.  

The KNN is classified as a Non-Parametric and Lazy 

Learning Algorithm in this work due to the underlying 

assumption about data distribution because all data is in 

training. Alternatively, the datasets dictate the model structure. 

Due to the fact that the vast majority of real-world datasets 

violate mathematical theoretical assumptions, this will be 

extremely useful in practice. KNN is a well-established and 

simple non-parametric technique for classifying samples. It 

calculates the approximate distances between PSD signal 
vectors obtained through PCA and then assigns unlabeled 

points to the class of their KNNs. 

The classification process algorithm is shown in Table II, 

where there are three main processes. The process is started 

with initializing the datasets. The signals in time-domain 

Doppler features, which are in WAV format, for four types of 

hand gestures measurements are converted into two 

components, which are I and Q components. The sampling 

rate of the signals is 44.1 kHz. Then, the datasets are 

segmented into one segment over 20 segments. The signal is 

then converted to a frequency-domain signal using FFT 
technique and transformed into PSD signal. From the PSD 

signal, the correlation between the signals is exploited using 

the PCA method and then divided into two groups: training 

and testing. Using the KNN method, the signals are resampled, 

and the missing dataset values are imputed. Lastly, the 

classified signals are verified using LOO method. 

TABLE II 

CLASSIFICATION PROCESS ALGORITHM 

1 Signal Initialization 

a) Time-domain Doppler features (WAV format) of four 
types hand gestures measurements. 
b) Separate the signal into two components - I and Q 
components. 
c) Sampling rate 44.1 kHz. 

2 Hand gesture signals segmentation and transformation 

a) Select one segment over 20 segments. 
b) Convert time-domain signal to frequency-domain signal - 
FFT technique. 
c) Transform into PSD signal. 

3 Classification process 

a) Exploit the correlation using PCA method. 
b) Divide the output of PCA into two groups - training and 
testing. 
c) Resampling and imputing missing datasets values using 
KNN method. 
d) Verify the classification using LOO method. 

III. RESULT AND DISCUSSION 

The power spectral analysis of four-hand gesture signals 

for the front and left side radars is shown in Fig. 7 and Fig. 8, 

respectively. Each graph contains 100 spectral, representing 

ten times of gestures from ten participants. In Fig. 7, there is 

a significant difference in spectral power between each type 
of hand gesture from 0 to 100 Hz, whereas Fig. 8 shows the 

significant difference between the hand gestures in the range 

of 0 to 50 Hz. Beyond the ranges, the signals are essentially 

noise floor. 

Additionally, different radar positions produced distinct 

spectra containing additional information easily 

distinguishable due to their different frequency characteristics. 
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The PSDs for each hand gesture class show slight differences 

due to the participants' varying speeds and styles of hand 

gestures. 

 

 
Fig. 7  Power spectral signals from the front side radar for (a) close hand, (b) 

open hand, (c) OK sign, and (d) pointing down 

 

 
Fig. 8  Power spectral signals from the left side radar for (a) close hand, (b) 

open hand, (c) OK sign, and (d) pointing down 

 

Fig. 9 and 10 show the power spectral signal for the one-

time gesture from the front and the left side radar, respectively. 

From the figures, it can be seen that there is a significant 

difference in the spectral of each hand gesture, verifying that 

each type of hand gesture type has its unique pattern of 

spectral. 

 

 
Fig. 9  Power spectral signal from the front side radar for the one-time gesture 

 

 
Fig. 10  Power spectral signal from the left side radar for the one-time gesture 

 

Fig. 11 and 12 show the PCA Pareto plot of the percentual 

variability explained by each principal component for the 
front and left side radars, respectively, as well as the 

cumulative variance explained. The number of PCs used for 

both side radars is different, where the front side radar in Fig. 

11 shows the variance explained by the first nine PCs, while 

the left side radar in Fig. 12 shows the variance explained by 

the first three PCs. In both figures, the first PC is higher than 

the other PCs, creating a downtrend pattern as PCA attempts 

to pack as much information into the first component as 

possible, then maximize the remaining information in the 

second, and so on. Due to the significant gap in the signal 

characteristics between each hand gesture type. This is 
because the left side radar experienced difficulty 

distinguishing hand gestures from that view. Additionally, the 

hand gestures performed in this experiment involved finger 

movements rather than larger wrist movements, which 

resulted in a small amount of information in the captured 

signals. This statement is reinforced further by referring to the 

PSD signals for the left side radar in Fig. 10, where there are 

fewer differences between the power spectral signals that 

occurred in the low-frequency range than the PSD signals for 

the front side radar in Fig. 9. 

 

 
Fig. 11  PCA Pareto plot of the first nine components for front side radar 
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Fig. 12  PCA Pareto plot of the first three components for left side radar 

 

The 2-D scatter plots of four different hand gesture classes 

from the front and left side radars are depicted in Fig. 13 and 

Fig. 14, respectively. The figures show that the hand gesture 

signals captured from the front side radar exhibit less 
consistency and accuracy in clustering than the hand gesture 

signals captured from the left side radar. The scattered plot 

could be a result of the speed and style of each participant's 

hand gesture, which is sensitively captured by the front side 

radar sensor. The separations between each class of hand 

gestures for front angles are quite distinct, indicating that the 

training model is performing well. Unlike the signals captured 

by the left side radar, the scores merge between each hand 

gesture type as the radar sensor barely distinguishes the hand 

gestures. Additionally, it is said that the differences in the 

power spectral signals observed at the low frequencies 

hampered the separation of the clusters. 
 

 
Fig. 13  2-D scatter plot of PCs for the front side radar 

 

 
Fig. 14  2-D scatter plot of PCs for the left side radar 

 

Even though the clustering in the 2-D scatter plot is not 

optimal, the average error of the model and the classification 
performance of both front and left side radars are satisfactory. 

The predicted class for front and left side radar is obtained 

using the KNN machine learning algorithm and the LOO 

method, as shown in Fig. 15 and 16, respectively. The hand 

gesture signals for the front side radar in Fig. 15 demonstrate 

a high accuracy percentage, while the hand gesture signals for 

the left side radar in Fig. 16, only close hand gesture achieves 

99% accuracy, while the others recorded 100% accuracy. The 

discrepancies may occur when hand gestures are not properly 

aligned with the radar sensor, particularly when they involve 

similar movements for each gesture. 

 

 
Fig. 15  Confusion matrix for front side radar 

 

 
Fig. 16  Confusion matrix for left side radar 

IV. CONCLUSION 

This study proposed the signal recognition of hand gestures 

from two distinct views from two CW radars. The 

classification results indicate that both hand gestures signal 

from the front and left side radars achieved high accuracy, 

despite the scores not clustering appropriately in the 2-D 

scatter plot. Only one class of hand gestures from the left side 

radar achieved a classification accuracy of 99%. Nonetheless, 

some adjustments and enhancements are possible in the future. 
The experiment can be enhanced by conducting it in a more 

controlled environment to avoid background noise and 

interference. This will aid in the collection of ideal hand 

gesture signals for classification via simple machine learning 

techniques such as KNN. Additionally, hand gesture signals 

from other views such as from the top, bottom, or right side 

can be collected for multiple inputs of deep learning neural 

networks, resulting in more accurate and realistic 

classification results, as various views of radars can convey 

varying amounts of information of the hand gesture's 

characteristics. 
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