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Abstract— The advanced driver assistance systems (ADAS) are one of the issues protecting people from a vehicle collision. A collision 

warning system is an essential part of ADAS to protect people from the dangers of accidents caused by fatigue, drowsiness, and other 

human errors. Multi-sensors have been widely used in ADAS for environment perception such as cameras, radar, and light detection 

and ranging (LiDAR). This work proposes that the relative orientation and translation between the two sensors must be considered in 

performing fusion. The researchers discuss the real-time collision warning system using 2D LiDAR and Camera sensors for 

environment perception and measure the distance (range) and angle of obstacles. In this paper, the researchers propose a fusion of 

two sensors consisting of a camera and 2D LiDAR to get the distance and angle of an obstacle in front of the vehicle implemented on 

Nvidia Jetson Nano using Robot Operating System (ROS). Hence, a calibration process between the camera and 2D LiDAR is 

required. After that, the integration and testing were carried out using static and dynamic scenarios in the relevant environment. The 

fusion process's experimental results between the camera and 2D LiDAR obtained an error rate of 0.197 meters. For better accuracy 

results on object detection and object distance measurement in the upcoming research, it is recommended to use the computational 

geometric transformation and projection approach. 
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I. INTRODUCTION 

In the past few years, advanced driver assistance systems 

(ADAS) are one of the issues to protecting people from 

vehicle collisions. A collision warning system is an essential 

part of ADAS to protect people from the dangers of 

accidents caused by fatigue, drowsiness, and other human 

errors. Multi-sensors has been widely used in ADAS for 

environment perception such as cameras, radar, and light 

detection and ranging (LiDAR) [1]–[4]. Cameras are widely 

used for object recognition, while radar and LiDAR are 

commonly used for distance measurement. LiDAR and radar 

have the advantage of long-distance measurements of 

objects in various conditions such as cloudy, rain, day, and 

night[5]. However, this capability is not sufficient to perform 

environmental analysis. LiDAR or radar are often combined 

with cameras to perform environmental perception 

recognition. In driver assistance systems, cameras are widely 

used for traffic sign recognition [6], real-time detection and 

tracking of pedestrians [7], vehicle detection [8], or forward 

collision and overtaking detection [5]. 

Combining 3D LiDAR and cameras is a popular way to 

build intelligent transportation systems or self-driving cars 

or ADAS. However, the expensive hardware cost of 3D 

LiDAR is both a drawback and a barrier. To reduce this cost, 

LiDAR 2D is a solution in developing a low-cost driver 

assistance system. However, 2D LiDAR has one 

disadvantage, which is that it only scans a single horizontal 

line.  The intrinsic and extrinsic calibration from both 

sensors is required to produce data accurately [1]. Besides, 

the relative orientation and translation between the two 

sensors are things that must be considered in performing 

fusion 

Herein, we discuss the real-time collision warning system 

using 2D LiDAR and Camera sensors for environment 

perception and estimate the distance (depth) and angle of 

obstacles. In this paper, we propose a fusion of two sensors 

that is a camera and 2D LiDAR to get the distance and angle 

of an obstacle in front of the vehicle implemented on Nvidia 

Jetson Nano using a Robot Operating System (ROS). Hence, 

a calibration process between the camera and 2D LiDAR is 

required, presented in section three followed by the 
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integration and testing using static and dynamic scenarios in 

the relevant environment.  

II. MATERIALS AND METHOD 

A. Materials 

Advanced driver-assist systems (ADAS) are a system that 

provides information from the car surrounding environment 

to assist drivers in avoiding accidents by providing alerts [7]. 

When ADAS detects an object around the car that can cause 

an accident, ADAS will warn the driver by a sound, and a 

light indicator will light up or activate automatic braking. 

ADAS use various sensors to map and recognize objects 

around cars, such as LiDAR, Radar, Cameras, Ultrasonic 

Sensors, and the Global Navigation Satellite System 

(GNSS)[9]. Sensor fusion has been done to produce a more 

accurate and robust detection. The combination of lidar and 

camera have been introduced for an object or vehicle 

detection [10], [11], object distance estimation [1], object 

tracking [2], collision avoidance system[12], and 

Autonomous Navigation[13] on different levels of data 

fusion. Cameras generally have a higher resolution than 

LiDAR, but cameras have a limited field of view and 

accurately estimate object distances. The Fusion technique is 

used as a correspondence between the points detected by the 

LiDAR and the points detected by the camera. The first step 

to integrating LiDAR and camera is to perform extrinsic 

calibration between sensors [1]. This implies that the 

geometric parameters of a sensor, such as position and 

orientation, must be determined, taking into account the 

other sensors [14]. The key point of heterogeneous sensor 

fusion is identifying each sensor's features and determining 

the geometric parameters from different angles and positions 

between sensors [15].  

In recent years, deep learning algorithms are being 

applied to ADAS tasks. Convolutional Neural Networks 

(CNN) is a deep learning algorithm that has been widely 

used for object detection systems in ADAS because its 

performance has outperformed traditional methods. The 

methods include Viola Jones Detectors [16], Histogram of 

Oriented Gradients (HOG)[17], and Deformable Part-based 

Model (DPM) [18] in speed and accuracy [7].  Deep learning 

for object detection can be grouped into two approaches, i.e., 

“CNN based two-stage detection” and “ CNN based one-

stage detection" [19]. R-CNN[20], SPP-Net[21], Fast R-

CNN [22], Faster R-CNN[23], Feature Pyramid Networks 

(FPN)[24], and Mask R-CNN[25] are  CNN based on a two-

stage detection approach. Furthermore, CNN based one-

stage detection there YOLO [26]–[29], SSD [30], and 

Retina-Net [31].The two-stage detector model has a better 

accuracy rate but is slower than the one-stage detector [32]. 

Two-stage detectors generate regions of interest using a 

Region Proposal Network (RPN) to classify objects and 

bounding box regression. On the other hand, the one-stage 

detector performs direct detection over a single pass through 

the neural network and bypasses the region proposal stage to 

learn the class probabilities and bounding box coordinates. 

SSD has advantages in accuracy and detection speed for 

small objects compared to other models in their group.  

ADAS development using deep learning algorithms and 

multi-sensors requires parallel processing and high-speed 

processing to improve performance. This requires a 

processing machine equipped with a GPU and a supporting 

middleware framework. The Robot Operating System (ROS) 

could be an adaptable system for creating robot software[33]. 

ROS allows the plan of modular systems development and 

parallelized systems.  ROS applications contain a collection 

of programs called nodes where each node will interact with 

each other through message passing. Two communication 

models are accessible in ROS: a subscriber-publisher model 

and a client-server [34]. The subscriber-publisher model uses 

one-way communication based on the concept of topics, and 

the client-server model uses two-way communication with 

the concept of service. ROS is a widely used platform for 

robotics implementations such as on the ADAS [13], [35]. 

Another advantage of using ROS is that many active 

communities have already created modules and drivers[35].  

B. Method 

This paper focuses on discussing the real-time collision 

warning system using 2D LiDAR and Camera sensors for 

environment perception and estimate the distance (depth) 

and angle of obstacles for the Advanced Driver Assistant 

System (ADAS). In this work, a sensor fusion approach 

between the camera and 2D LiDAR sensor is proposed to 

estimate the distance and angle of obstacles in front of the 

vehicle implemented on the Nvidia Jetson Nano using the 

Robot Operating System (ROS).  Figure 1 shows an 

overview of the ADAS architecture, and figure 2 shows an 

overview of the ROS architecture for conducting sensor 

fusion. 

 

 
Fig 1. Architecture System ADAS 

In this context, the ADAS was equipped with a 

LOGITECH Webcam C170 camera for video streaming and   

SLIMTEC RP-LiDAR A1 model 2D LiDAR sensor to 

estimate the distance and angle of obstacles. A single board 

computer NVIDIA Jetson Nano with a Quad-core ARM A57 

@ 1.43 GHz CPU, 4GB Memory, and 128-core GPU 

Maxwell has been implemented as the main processor of 

ADAS systems equipped with 7" HDMI IPS LCD, which is 

installed in the car dashboard. For software, ROS Melodic 

was installed on the NVDIA Jetson Nano as the main 

platform to implement the collision warning system for 

ADAS.  

Furthermore, ROS architecture is created by applying the 

subscriber-publisher model system, whose architecture is 

depicted as in figure 2 to fuse the data from both sensors. In 

this architecture, there are two nodes that works as a 

publisher or a subscriber, i.e., the “Object Detection Node” 

and “Range /distance detection node.” These two nodes are 

connected to the ROS Master that works as a broker 
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Fig. 2 ROS Architecture for ADAS 

The main part of the collision warning system in this 

work is the object detection system and a system to measure 

the distance and angle of obstacles  

A. Object Detection System  

In this work, an essential part of the collision warning 

system is the object detection system. This part serves to 

identify the obstacle in front of the vehicle, such as cars, 

motorcycles, pedestrians, and other objects.  For this reason, 

the camera sensor plays a vital role as a supplier of the 

environmental images for the object recognition process. 

“Object Detection Node” is a set of ROS packages that 

contains tools for object detection system using SSD 

MobileNet-V2 from [36]. The SSD MobileNet-V2 

architecture uses a convolution predictor SSD300 with an 

input size of 680x480 pixels from a LOGITECH webcam 

with a field of view (FoV) of 600. A dataset from [37] has 

been applied to create this model, which supports the 

NVIDIA Jetson Nano.  Figure 3 shows the SSD300 

architecture used for the object detection system. 

 
 

Fig. 3 Mobilnet-V2  SSD300 Architecture[38] 

The output of the “Object Detection Node” is subject to 

be published in ROS Master using the topic 

"/jetson/result_detection" which contains image data (width 

and height) and bounding box coordinates of the detected 

object.  

The following is the object detection algorithm: 

Algorithm 1: Object Detection 

Object detection estimation with Mobilenet 

Input: Camera FoV 60o with 640x480  

Output: Display object detection, width, height and centre 

coordinate detection 

Method: 

1. Initial node ROS with ObjectDetection 

2. Initial object detection parameter image, width and 

height 

3. Detection class id with mobilnet SSD 

4. Detection coordinate left, right, bottom, width, 

height, area and center x and y coordinate 

5. Publish detection with parameter image, width and 

height  

B. Measurement of Distance and Angle of Obstacles 

Measuring the distance and angle of obstacles is carried 

out by fusing the camera sensor and RP-LiDAR 2D sensor. 

The fusion process is executed in “Fusing Object and Range 

Detection Node” with input from “Object Detection Node”, 

“Range Detection Node”, and “ROS Master”.  “Range 

Detection Node” will read the distance and angle data of 

obstacles around the vehicle from the RP-LiDAR sensor 

with a reading radius of 360 degrees using rplidar library. 

Furthermore, the data is sent to ROS Master   using topic "/ 

scan_msg" and then the data will be fused on “Fusing Object 

and Range Detection Node”.  

In order to obtain the distance and angle obstacle, data 

fusion from RP-LiDAR and camera sensors was performed. 

The result of detection of distance and obstacle angle will be 

used to provide warning in ADAS. Beforehand, the 

calibration process has been carried out using a mechanism 

as shown in Figure 4 where the Camera sensor and the Lidar 

sensor are placed in the same position as in figure 6. In the 

calibration process, the focal length or field of view (fov) 

from camera and RP-LiDAR is set at an angle of 60 degrees. 

FoV will be used as a reference in the warning system at 

ADAS. This means that if the middle point of the bounding 

box from object detected by SSD-MobileNet within the FoV 

area, the warning system in ADAS will work (warning will 

be visualized on the 7” LCD using the RVIz package). The 

formula used for this purpose is as follows: 
 

angle = (60.0/640.0)* detected.Center   (1)  

angle_detection = 60.0 + angle   (2) 

Distance = scan[int(angle_detection)]   (3) 
 

 
Fig. 4 RP-LiDAR and Camera Calibration Mechanism 

 

The following is the distance detection algorithm: 

Algorithm 2:  Distance Detection 

Distance Detection with 2D Lidar with RPLidar 

Input: RPLiDAR 

Output: distance detection  

Method: 

1. Initial node RoS with RangeDetection 

2. Detection Angle  

3. Convert Angle to Radian 

4. Publish Range detection with parameter range and 

degree  

The following is the fusion object and angle detection 

algorithm: 
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Algorithm 3: Fusion Object and Angle Detection 

Range Detection with 2D Lidar with RPLiDAR 

Input: node ObjectDetection and node RangeDetection 

Output: Display object and angle detection 

Method: 

1. Subscribe Object detection and Range Detection 

2. Initial range Radian to pixel 

3. Detection object with midpoint coordinate  

4. Convert center coordinate with range to save data 

range 

5. Publish range detection and range  

III.  RESULTS AND DISCUSSION 

In this section, we describe the detailed experimental 

setup and performance evaluation process of the data fusion 

method within the context of distance and angle sensing for 

a warning system in ADAS. The experiment scenario used in 

this work is shown in Figure 5. The positional displacement 

between the sensors is explained in detail in Figure 6. 

 

 
Fig 5. ADAS Experimental Scenarios 

 

Fig. 6 (a) NVIDIA Jetson Nano to implement ROS and LCD display 7" (b) 

Installation of RP-LiDAR and Camera 

ADAS prototype is mounted on the front of the car to get 

good detection results. In this work, we use 2D lidar, which 

can scan objects with a radius of 0 - 360. The RP-LiDAR 

and the camera are mounted parallel, as shown in figure 6 to 

facilitate the fusion process's calibration.   

The experiment for ADAS performance testing was 

performed for three objects such as pedestrians, motorcycles 

and cars with a scenario, as shown in Figure 5. Based on the 

experimental results, the output data from the RP-LiDAR 

sensor is in the form of a 360 array with an infinity value if 

the object is above 12 meters, and the data will have a 

numeric value if an object is detected under that distance. 

Furthermore, the data will be sent by the “range detection 

node” to the ROS master with the message topic 

"/scan_msg". The following is an example of data from RP-

LiDAR detection results on tn  : 
 

t = 1602756357940128087 | data = (inf, inf, inf, inf, inf, inf, 

inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 

inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 

inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 

inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 

inf, inf, inf, inf, inf, inf, inf, inf, 8.597999572753906, inf, 

inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 

inf, inf, 8.57699966430664, inf, 3.565999984741211, 

3.0840001106262207, 3.0339999198913574, 

2.8399999141693115, 2.696000099182129, 

2.677999973297119, 2.681999921798706, 

2.885999917984009, inf, 8.833999633789062, inf, inf, 

inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 

inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 

inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 

inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 

inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 

inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 

inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 

inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 

inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 

inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 

inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 

inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 

inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 

inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 

inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 

inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 

inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf) 
 

Meanwhile, the data from the obstacle detection result 

from "Object Detection Node" contains information about 

the time, the midpoint coordinate of the object bounding box, 

and the object label. The following is an example of data 

from the object detection results:  
 

t = 1602756362772608041 | (x,y) = 

(236.691894531,272.439361572) |  distance = 

0.641584333167  |  lable = motorcycle 
 

t = 1602757073928807020 | (x,y) = 

(431.908874512,215.612228394) | distance = 2.18477000313 | 

lable = truck 
 

t = 1602756751280932903 | (x,y) = 

(478.734436035,191.203140259) | distance = 3.9323105664 | 

lable = bus 
 

t = 1602757064671120882 | (x,y) = 

(377.174682617,215.417694092) | distance = 0.528737693536 

| lable = car 
 

t = 1602757063625045061 | (x,y) = 

(316.203216553,210.66519165) | distance = 1.91034458866 | 

lable = person 
 

As a result, the object detection data from the "object 

detection node" would be fused with the "range detection 

node" data—the results of the fusion output, as shown in 

figure 7.  

(a) 

(b) 
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Fig. 7 The fusion results between object detection - distance and angle 

of objects 

In Figure 7, it can be seen that the distance data (blue text) 

is the result of fusion. Table 1 describes the test results in 

more detail from two scenarios with an actual distance of 5.2 

meters and 3 meters. In the table, it can be seen that the 

calculation of the distance (fusion) with actual conditions 

has an average error rate of 0.197 meters. 

TABLE I.  

TESTING THE ESTIMATED DISTANCE AND THE ACTUAL DISTANCE. 

Scenario object 

Actual 

distance 

[m] 

Estimated 

distanced 

[m] 

Error 

[m] 

1 Car 5.2 5.3 0.1 

Motor cycle 5.2 5.8 0.6 

People 5.2 5.3 0.1 

2 Car 3 3.12 0.12 

Motor Cycle 3 3.13 0.13 

People 3 3.13 0.13 

Average    0.197 

IV. CONCLUSION 

The ADAS system has been developed using NVIDIA 

Jetson Nano with the ROS platform and input from two 

sensors. The first sensor is a 2D LiDAR sensor with a 360o 

range with a maximum distance of 12 meters. The second 

sensor is a Logitech USB Camera sensor has shown a good 

performance where the object detection system can work 

with 40 fps performance, so it is suitable for real-time 

systems. Meanwhile, the fusion performance applied with 

the conversion from degree to coordinate has also shown 

satisfactory performance from the experiment to detect a car, 

motorcycle, and people objects. The error rate is obtained 

with an average of 0.197 meters. This is very realistic, 

considering the distance is still below 1 meter. However, to 

improve its accuracy for the upcoming study, the researchers 

recommend using the computational geometric 

transformation and projection approach. 
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