
361

Tag Clouds for Software Documents Visualization

Ra’Fat Al-Msie’deen#

Department of IT, Faculty of Information Technology, Mutah University, Mutah 61710, Karak, Jordan

 E-mail: rafatalmsiedeen@mutah.edu.jo

Abstract— Legacy software documents are hard to understand and visualize. The tag cloud technique helps software developers to

visualize the contents of software documents. A tag cloud is a well-known and simple visualization technique. This paper proposes a

new method to visualize software documents, using a tag cloud. In this paper, tags visualize in the cloud based on their frequency in

an alphabetical order. The most important tags are displayed with a larger font size. The originality of this method is that it visualizes

the contents of JavaDoc as a tag cloud. To validate the JavaDocCloud method, it was applied to NanoXML case study, the results of

these experiments display the most common and uncommon tags used in the software documents.

Keywords— Software engineering, Software visualization, Javadoc, Tag cloud.

I. INTRODUCTION

Nowadays, tag clouds are widely used in several domains.

For instance, tag clouds have been used in the software

engineering domain for software source code and

information visualisation [1-4]. This paper suggests an

original approach called JavaDocCloud to visualize software

documents as a tag cloud. This paper considers only the

Javadoc document. The Javadoc is a software document

written by the software developer to summarize software

source code [5]. The tag cloud is a visualization technique

[6], while the tag is a single word. The main idea of the tag

cloud is to visualize the content of document as a single tag

cloud. The tag cloud uses font size to display the tag

frequency in the document.

Most current methods are designed to identify tag clouds

from textual documents. In the literature, there is no

approach identifies tag cloud from software documents such

as Javadoc. There are very few existing methods which use a

tag cloud visualization technique with software source code.

Emerson et al. use tag clouds to visualize class names and

method names [1, 2]. Cottrell et al. suggest an approach to

visualize software methods through tag cloud [7]. Al-

msie'deen [4] offers the Iconic method to visualize software

source code as a tag cloud.

JavaDocCloud approach aims to help software developer

to understand the documents of legacy software system. Tag

cloud helps software developers to discover the most

frequent words used in the Javadoc. JavaDocCloud approach

accepts as input the software document (Javadoc). Then, the

approach extracts all words from Javadoc. Next, the

approach stems the words into their roots or tags. After that,

the approach assigns weight to each tag based on its

frequency in the document. Finally, JavaDocCloud identifies

tag cloud as output. This approach is based on the previous

work called Iconic [4].

The JavaDocCloud approach is detailed in the remainder

of this paper as follows. Section II discusses the related work.

Section III presents Javadoc tag cloud process step by step.

Section IV describes the experiments that were conducted to

validate JavaDocCloud proposal, while section V concludes

and provides perspectives for this work.

II. RELATED WORK

This section presents the related work relevant to

JavaDocCloud contributions. It also provides a concise

overview of the different approaches and shows the need to

propose JavaDocCloud approach. Anslow et al. [8] use a tag

cloud to visualize the structure of Java class names. The

extracted tag clouds have exposed the most frequently used

words used in Java class names. Cottrell et al. [7] propose an

approach to visualize software methods via tag cloud.

Eclipse plugin Sourcecloud [9] creates a tag cloud

visualization of the text within software code. The authors of

[10] used the tag cloud to help name the extracted features

based on the most frequent word in the identified blocks. In

[4], the author used a tag cloud to visualize software

identifier names (i.e. packages, classes, attributes and

methods). In software engineering domain, most existing

approaches are designed to extract tag clouds from software

source code. Regarding software documents there is no

approach that visualizes these documents as a tag cloud. The

concise overview of the existing approaches shows the need

INTERNATIONAL JOURNAL ON INFORMATICS VISUALIZATION

VOL 3 (2019) NO 4

e-ISSN : 2549-9904

ISSN : 2549-9610

362

to propose an approach to visualize the software documents

by using the tag cloud.

III. JAVADOC TAG CLOUD PROCESS

This section presents the key ideas and principles used in

the Javadoc Cloud approach and, at last, it describes the

Javadoc tag cloud process step by step.

Fig. 1 The Javadoc tag cloud process

An overview of the Javadoc tag cloud process is shown in

Figure 1. The input is the legacy Javadoc documents

obtained from software documents. The output is the tag

cloud. As an illustrative example, this paper considers the

Javadoc of the ArgoUML [11] case study. The

JavaDocCloud approach identifies the Javadoc tag cloud in

five steps as detailed in the following.

A. Extracting the Words from Javadoc

The first step of the Javadoc tag cloud process is the

extraction of words from Javadoc documents. The goal of

this step is to mine all the words from the Javadoc

documents. The inputs of this step are a set of Javadoc

documents. The output of this step is a document containing

all the words from Javadoc documents. In this step, the

punctuation marks and numbers are removed. The approach

splits the words of document into a set of words by using the

camel-case splitting algorithm [12, 13]. The camel-case

splitting algorithm splits words based on capital letters. For

example: skipWhitespace is split into a skip and whitespace.

B. Stemming the Words into Their Roots

The second step of the Javadoc tag cloud process is the

word stemming by using WordNet [14, 15]. Word stemming

means dropping a word to its word stem or root. For

example, the word "combined" has the word root "combine".

The stemmer takes as input the original word and produces

as output the word base or tag. The input of this step is the

words file which is the output of the previous step. The

output of this step is the tags file.

C. Arranging Tags in An Alphabetical Order

The third step of the Javadoc tag cloud process is

arranging tags in an alphabetical order. This step accepts as

input the tags file from the previous step and creates as

output a tags file which contains all tags in an alphabetical

order. For example, a tags file has the following tags:

element, charlie, beta and alpha. In order to display these

tags in the cloud there is a need to store these tags in an

alphabetical order. Thus, the output tags file contains the

same tags in the following order: alpha, beta and charlie,

element.

D. Assigning Weights to Tags

The fourth step of the Javadoc tag cloud process is a tag

weighting. This step accepts as input the tags file from the

previous step and creates as output a tags file which contains

the frequency of each tag across all Javadoc documents. The

font size of each tag in the tag cloud gives an indication

about the tag importance. In this step, a weight is given to

each tag. Where a weight is given to tag based on its

frequency across all software documents. In tag cloud, larger

font sizes assigning to the more frequent tags. For example,

in the Javadoc of legacy software the message tag was

occurred 5 times across all documents, so the given weight

of this tag is 5.

E. Identifying Tag Cloud

The last step of the Javadoc tag cloud process is

identifying the tag cloud. This step accepts the tags file and

builds the tag cloud as output. Tag cloud represents all tags

extracted from software documents. The tags importance in

the cloud can obtain easily through tag font sizes. In this

paper, the weight of the tag is determined by the font-size

only. The use of color is random, where it is not mapped to

any conditions. The mined tag cloud allows software

developers to comprehend what are the most common tags

as well as the uncommon tags.

As an example, the approach uses the Javadoc for the

main class of Argo UML [16] software which belongs to

org.argouml.application package. Table I shows the Javadoc

for the main class of ArgoUML software.

TABLE I

JAVADOC FOR MAIN CLASS OF ARGOUML SOFTWARE

Class Main Summary

Package org.argouml.application

Here it all starts ...

Field Summary

static String DEFAULT_LOGGING_CONFIGURA

TION: The location of the default

logging configuration (.lcf) file.

private

static Logger
LOG Logger.

private static Vector postLoadActions

Constructor Summary

Main()

Method Summary

static void
addPostLoadAction(Runnable r): Add

an element to the PostLoadActions list.

private static void checkHostsFile(): Check that we can

get the InetAddress for localhost.

363

private static void checkJVMVersion(): Checks the JVM

Version.

private

static SplashScreen
initializeGUI(boolean doSplash, String

the Theme): Do a part of the

initialization that is very much GUI-

stuff.

static void main(String[] args): The main entry

point of ArgoUML.

static void performCommands(List list): Perform a

list of commands that were given on the

command line.

private static void printUsage(): Prints the usage message.

private static URL
projectUrl(String projectName, URL ur

lToOpen): Calculates the URL for the

given project name.

Figure 2 shows the extracted tag cloud from Javadoc of

main class in Table I. In Figure 2, tag cloud shows the most

common tag (e.g., static and the) and the uncommon tags

(e.g., args, use, we, much and part).

Fig. 2 The tag cloud of main class

Figure 3 shows the tag cloud for the main class of

ArgoUML software system. In this tag cloud, the number of

tag frequency appears beside each tag.

IV. EXPERIMENTATION

This section presents the experiment that conducted to

validate the JavaDocCloud approach. It also shortly presents

the NanoXML case study and its results and, at last, it

presents the threats to validity of JavaDocCloud approach.

The JavaDocCloud approach has been tested on the

NanoXML [17] case study. The NanoXML software is a

Java program for parsing XML file. The approach prototype

is produced to extract tag cloud from software Javadoc.

More information about prototype is available at

JavaDocCloud web page [18]. Figure 4 shows the extracted

tag cloud from JavaDoc of NanoXML software. The

JavaDocCloud approach needs to 1988 ms to create the tag

cloud from the JavaDoc of NanoXML software.

Fig. 3 The tag cloud with tag frequency for the main class of ArgoUML

software

Fig. 4 The extracted tag cloud from JavaDoc of NanoXML software

The most common and uncommon tags across the Javadoc

documents of NanoXML software is presented in Table II.

TABLE II

TAGS MINED FROM NANOXML JAVADOC

The most common tags The uncommon tags (e.g.)

Tag Frequency Tag Frequency

Java 140 Validate 1

The 136 Serializable 3

String 117 Override 1

Property 97 Note 1

Lang 91 Jar 2

The number of tags = 224 tags

364

Figure 5 shows the tag cloud of NanoXML JavaDoc

documents. In Figure 5, the tag cloud includes the tag

frequency. In JavaDocCloud approach the tag frequency

uses as an indicator of the tag frequency through the

software documents. For a lack of research evaluating tag

clouds in the software engineering field, there was trouble in

evaluating the JavaDocCloud method.

Fig. 5 The tag cloud with tag frequency for the NanoXML JavaDoc

The threat to the validity of JavaDocCloud approach is that

current work considers only one type of software documents

which is JavaDoc. The Wordnet dictionary maybe not

reliable in all cases to identify word stems or roots.

Moreover, when software developer uses mix words (such as:

GeTSettingS) in the JavaDoc documents the camel-case

splitting algorithm can’t handle such word.

V. CONCLUSION

This paper presented a new technique to visualize

software documents as a tag cloud. The key idea of this

approach is to help software experts to understand the legacy

software documents via tag cloud technique. The novelty of

JavaDocCloud approach is that it exploits the Javadoc of

software system to build an efficient tag cloud. The approach

has applied on NanoXML case study. The resulted tag cloud

shows the most frequent tags and the uncommon tags.

Regarding future work, JavaDocCloud approach plans to

extend the current approach to include other types of

software artifacts such as: design documents.

REFERENCES

[1] J. Emerson, Tag Clouds in Software Visualisation, MSc Thesis,
University of Canterbury, 2014.

[2] J. Emerson, N. Churcher, A. Cockburn, “Tag Clouds for Software

and Information Visualisation”, 14th Annual ACM SIGCHI NZ
Conference on Computer-Human Interaction, Christchurch, New

Zealand, November 15-16, pp. 1-4, 2013.

[3] J. Emerson, N. Churcher, C. Deaker, “From Toy to Tool: Extending
Tag Clouds for Software and Information Visualisation”, 22nd

Australian Software Engineering Conference, Melbourne, Australia,

June 4-7, pp. 155-164, 2013.

[4] R. Al-Msie’deen, “Tag Clouds for the Object-Oriented Source Code

Visualization,” Engineering, Technology & Applied Science
Research, vol. 9, no. 3, pp. 4243–4248, 2019.

[5] D. Kramer, “API documentation from source code comments: a case

study of Javadoc,” In Proceedings of the 17th annual international

conference on Computer documentation, SIGDOC ’99, pp. 147–153,

1999.

[6] C. Deaker, L. Pettigrew, N. Churcher, and W. Irwin, “Software

visualisation with tag clouds,” in ASWEC 2010 Industry Track

Proceedings, J. Hosking and B. Long, Eds., Auckland, New Zealand,

pp. 129–133, 2010.
[7] R. Cottrell, B. Goyette, R. Holmes, R. J. Walker, J. Denzinger,

“Compare and Contrast: Visual Exploration of Source Code

Examples”, 5th IEEE International Workshop on Visualizing
Software for Understanding and Analysis, Edmonton, Canada,

September 25-26, pp. 1-4, 2009.

[8] C. Anslow, J. Noble, S. Marshall, E. D. Tempero, “Visualizing the
Word Structure of Java Class Names”, in Companion to the 23rd

Annual ACM Sigplan Conference on Object-Oriented

Programming, Systems, Languages, and Applications, Nashville,

USA, Octomber 13-19, 2008.

[9] M. Stocker, https://misto.ch/2011/09/19/tag-cloud-visualization-for-

source-code/, August 25, 2019.

[10] J. Martinez, T. Ziadi, T. F. Bissyande, J. Klein, Y. L. Traon,

“Name Suggestions During Feature Identification: The Variclouds

Approach”, 20th International Systems and Software Product
Line Conference, Beijing, China, September 16-23, 2016.

[11] ArgoUML Javadocs-0.20: http://argouml-stats.tigris.org/, August 25,

2019.
[12] R. Al-Msie’deen, M. Huchard, A. Seriai, C. Urtado, S. Vauttier,

“Automatic documentation of [mined] feature implementations

from source code elements and use-case diagrams with the
REVPLINE approach”, International Journal of Software

Engineering and Knowledge Engineering, Vol. 24, No. 10, pp.

1413–1438, 2014.

[13] R. Al-Msie’deen, A. D. Seriai, M. Huchard, C. Urtado, S.

Vauttier, “Documenting the mined feature implementations from

the object-oriented source code of a collection of software product

variants”, 26th International Conference on Software Engineering

and Knowledge Engineering, Knowledge Systems, Vancouver,

Canada, July 1-July 3, 2014.
[14] G. A. Miller, “Wordnet: A lexical database for English”,

Communications of the ACM, Vol. 38, No. 11, pp. 39–41, 1995.

[15] WordNet: https://wordnet.princeton.edu, August 25, 2019.
[16] ArgoUML Javadocs: http://argouml-

stats.tigris.org/nonav/javadocs/javadocs-0.20/, August 25, 2019.

[17] NanoXML: http://nanoxml.sourceforge.net/orig/index.html, August
25, 2019.

[18] R. Al-Msie’deen, https://sites.google.com/site/ralmsideen/tools,

August 25, 2019.

