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Abstract—Integrating machine learning (ML) and artificial intelligence (AI) with renewable energy sources, including biomass, biofuels, 

engines, and solar power, can revolutionize the energy industry. Biomass and biofuels have benefited significantly from implementing 

AI and ML algorithms that optimize feedstock, enhance resource management, and facilitate biofuel production. By applying insight 

derived from data analysis, stakeholders can improve the entire biofuel supply chain - including biomass conversion, fuel synthesis, 

agricultural growth, and harvesting - to mitigate environmental impacts and accelerate the transition to a low-carbon economy. 

Furthermore, implementing AI and ML in combustion systems and engines has yielded substantial improvements in fuel efficiency, 

emissions reduction, and overall performance. Enhancing engine design and control techniques with ML algorithms produces cleaner, 

more efficient engines with minimal environmental impact. This contributes to the sustainability of power generation and 

transportation. ML algorithms are employed in solar energy to analyze vast quantities of solar data to improve photovoltaic systems' 

design, operation, and maintenance. The ultimate goal is to increase energy output and system efficiency. Collaboration among 

academia, industry, and policymakers is imperative to expedite the transition to a sustainable energy future and harness the potential 

of AI and ML in renewable energy. By implementing these technologies, it is possible to establish a more sustainable energy ecosystem, 

which would benefit future generations. 
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I. INTRODUCTION

As we work toward a more sustainable and fair future, the 
synergies between the Sustainable Development Goals 
(SDGs), ambitions for reaching net-zero emissions, and 
machine learning are becoming increasingly apparent  [1]–
[3]. This comprehensive framework for addressing global 
concerns, such as poverty, inequality, and climate change, is 
provided by the Sustainable Development Goals (SDGs) [4], 
[5]. By emphasizing climate action and environmental 
sustainability, net-zero targets, which aim to achieve a 
balance between the removal of greenhouse gases and the 
emissions of those gases, are closely aligned with these aims 
[6], [7]. Machine learning is critical in accelerating progress 
toward the SDGs and net-zero objectives [8], [9]. Machine 
learning can analyze massive volumes of data and recognize 
complex patterns [10], [11]. Through the utilization of 

machine learning algorithms, we can optimize the allocation 
of resources, enhance the efficiency of energy use, and 
develop novel solutions for the sustainability of development, 
system protection, and the mitigation of climate change [12]–
[15]. Furthermore, machine learning improves decision-
making processes by offering insights and predictive analytics 
[16], [17]. This enables governments, companies, and 
communities to make educated decisions that align with the 
SDGs and contribute to the achievement of net-zero emissions 
[18]–[20]. Integrating machine learning with the SDGs and 
net-zero objectives provides a potent way to address urgent 
global concerns and drive substantial progress toward a more 
sustainable and resilient future for everyone [21]–[23].  

Recently, there has been a significant transformation in the 
renewable energy sector, establishing it as a crucial element 
in the global energy landscape, especially during the post-
COVID-19 pandemic [24]. Renewable energy sources like 
solar, biofuels, wind, hydropower, biomass, and geothermal 
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energy are gaining popularity worldwide [25]–[32]. Solar 
power has become a significant player in the shift towards 
renewable energy sources [33], [34], benefiting from factors 
such as the decreasing costs of photovoltaic technology and 
supportive legislation [35], [36]. A surge in utility-scale solar 
installations and rooftop solar panels for residential and 
commercial buildings has been observed worldwide, aiming 
to increase the proportion of renewable energy contributing to 
energy systems and reduce greenhouse gas [37], [38]. In 
addition, solar energy could also be used for other purposes 
such as distillation, heat generation, and hydrogen generation 
[39]–[41]. Similarly, wind energy has experienced 
considerable growth, especially in regions with favorable 
wind conditions [42]–[44]. Wind farms, whether on land or at 
sea, are experiencing significant growth, with advancements 
in turbine technology enhancing their performance and output 
[45]–[47]. Both large-scale dams and smaller-scale projects 
play essential roles in harnessing hydroelectric power, a 
significant source of energy globally [48]. Aside from aiding 
in electricity production and heat generation, biomass and 
bioenergy, including organic and agricultural waste, play a 
crucial role in reducing carbon emissions across various 
industries [49]–[51]. In addition, municipal solid waste, 
including waste tire, plastic waste, and industrial waste, could 
also be reused to produce energy and value-added chemicals 
[52]–[55]. Geothermal power is used to produce electricity 
and hydrogen and for heating directly [56], [57]. Acquiring 
geothermal energy involves extracting heat from beneath the 
Earth's surface. Several worldwide trends fuel the growth of 
renewable energy sources [58], [59]. In recent years, there 
have been many studies relating to waste heat recovery, and 
the waste-to-energy path could also be a potential and 
promising solution for achieving green energy [60]–[63]. 
These trends encompass decreasing costs, technological 
advancements, regulatory support, efforts to combat climate 

change, and a growing recognition of the significance of 
environmental sustainability [64]–[66]. Despite facing 
challenges like grid integration and intermittency [67], [68], 
ongoing developments in energy storage [69], [70], using 
phase change materials [71]–[73], grid infrastructure [74], 
[75], and renewable energy forecasting [76]–[78] are 
addressing these issues and creating new opportunities for the 
expansion of renewable energy. Ultimately, renewable energy 
has transformed from a niche option to a widely adopted 
energy source, vital in the global shift towards a sustainable, 
low-carbon future [79]–[82].  

There is a critical problem that requires an immediate 
response. That problem is the rising need for energy  (used for 
industry, agriculture, and daily life) [83]–[85] and fuels (for 
transportation means such as ships, automobiles, and motive, 
motorcycles) [86]–[90] throughout the world. It is becoming 
increasingly vital for us to rely on various renewable energy 
sources, notably solar energy, as the requirements of humans 
continue to expand [91], [92]. We must switch to renewable 
energy sources like solar, wind, and hydrothermal energy 
because fossil fuels, which were previously the foundation of 
our energy systems, are now a large contributor to carbon 
dioxide released into the atmosphere [93], [94]. It is necessary 
to hasten the transition to clean energy as the dominant energy 
source to achieve global carbon neutrality [95], [96]. Not only 
does this need the development of new technologies, but it 
also necessitates the creation of superior materials that can 
give continuous energy output. This change is driven chiefly 
by solar energy, which may be converted into thermal energy 
by photovoltaic techniques and solar thermal conversion 
[97]–[99]. In addition, the technology of renewable fuel cells 
is gaining substantial momentum within the field of clean 
energy, notably in the context of battery-operated mobility. 
The following are recent studies discussing and summarizing 
various renewable energy domains as shown in Table 1.  

TABLE I 
RECENT STUDIES IN THE RENEWABLE ENERGY DOMAIN 

Topic Main outcomes Study type Sources 

Solar stills The findings indicated that the operational factors of the solar still system with an 
inclined weir type had a substantial effect on the amount of water produced.  

Experimental and 
modeling  

[100] 

Green hydrogen 
production  

According to thorough evaluations and computations, Canada's total capacity for 
green hydrogen generation is 201.12 Mt, 205.69 Mt, and 211.17 Mt, based on 
proton exchange membrane, alkaline, and anion exchange membrane electrolyzers. 

Analytical  [101] 

Solar radiation  To improve efficiency, radiation is distributed non-uniformly.  
Heat transmission on the cold side ought to be improved via non-uniform radiation. 

Analytical  [102] 

Perovskite solar cells According to a review of research, perovskite solar cells (PSCs) have potential as 
photovoltaic (PV) technologies because of their high-power conversion efficiency 
(PCE) and cheap manufacturing costs.  

Review  [103] 

AI-based prognostic 
modeling  

AI-based GEP helped in model prediction and RSM helped in accurate 
optimization.   

Analytical 
modeling 

[104] 

Optimization approach 
of biohydrogen 
production 

Optimization of biohydrogen synthesis process with high accuracy.   Analytical 
modeling 

[105] 

Management of biochar 
yield 

Application of ML for modeling-forecasting of biochar from biomass.  Review of 
modeling 
techniques.  

[106] 

Photovoltaic thermal 
system  

Application of neural networks in the complex domain of PCM-based solar system.   Analytical 
modeling  

[107] 

Prediction of biofuel 
properties  

Model-forecasting of biofuel properties and its use in diesel engines.  Analytical 
modeling  

[108], 
[109] 

Optimization of fuel 
consumption  

AI-based optimization was employed for navigation time as well as fuel 
consumption.  

Modeling  [110] 
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The field of renewable energy is characterized by a great 
deal of uncertainty, which is caused by a variety of causes, 
including variations in the weather, shifts in the demand for 
energy, and limitations presented by technology [111], [112]. 
When it comes to effectively integrating renewable energy 
sources into the existing energy infrastructure, dealing with 
these uncertainties creates a significant number of hurdles 
[113], [114]. In spite of this, the development of technologies 
such as artificial intelligence (AI) and machine learning (ML) 
is proving a substantial influence in addressing these 
difficulties and releasing the full potential of renewable 
energy sources [115][116]. Utilizing artificial intelligence and 
machine learning algorithms to examine large data sets 
derived from weather forecasts, historical energy production 
data, and other relevant sources can result in more accurate 
predictions for the generation of renewable energy [117], 
[118] This can be accomplished through enhanced forecasting 
and planning. The provision of assistance to energy operators 
and grid management in the prediction of changes in supply 
and demand, the optimization of energy production schedules, 
and the effective planning for grid integration [119]–[121].  

The incorporation of renewable energy sources into 
existing power grids requires the implementation of intricate 
control and optimization strategies in order to maintain the 
grid's stability and dependability. The application of artificial 
intelligence and machine learning techniques can improve 
grid management by dynamically modifying energy flows, 
monitoring energy storage installations, and predicting 
possible disturbances to the grid. minimizing disruptions to 
the system while ensuring the smooth integration of 
renewable energy sources of electricity [122], [123]. The 
application of artificial intelligence and machine learning 
algorithms to improve the design and operation of renewable 
energy systems, such as solar farms, wind turbines, and 
energy storage facilities, is called "enhancing energy 
systems." These technologies can improve energy efficiency, 
maximize production, and minimize operating expenditures. 
This may be accomplished by analyzing data about site 
conditions, equipment performance, and energy use patterns. 
The typical application of and timeline ML penetration in this 
domain is depicted in Fig. 1 [124].  

 

 
Fig. 1  Historical perspective of AI & ML penetration in the energy domain [124] 

 
The application of artificial intelligence and machine 

learning algorithms has the potential to improve resource 
allocation in renewable energy projects. This can be 
accomplished by identifying the most suitable locations for 
new installations, selecting the renewable energy 
technologies that are most suitable for particular sites, and 
streamlining the distribution of resources such as land, 
materials, and labor [125], [126]. The optimization of project 
development procedures and the enhancement of the overall 
efficacy of investments in renewable energy are both 
positively impacted in this way. The utilization of artificial 
intelligence and machine learning technology enables the 
forecasting of maintenance needs in renewable energy 
infrastructure [127]–[129]. This is accomplished by analyzing 

data from sensors and monitoring equipment in order to 
identify potential equipment problems in advance. The use of 
this proactive strategy helps reduce the amount of time that 
equipment is down, extends its lifespan, and improves the 
reliability of the system [130], [131]. The uncertainties that 
exist within the sector of renewable energy provide complex 
issues that can be effectively addressed via the application of 
technologies that utilize artificial intelligence and machine 
learning. AI and ML are helping personnel working in the 
renewable energy sector to make well-informed decisions, 
improve system performance, and accelerate the transition 
toward a sustainable energy future. This is being 
accomplished through the utilization of data-driven insights, 
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predictive analytics, and sophisticated optimization 
techniques.  

Examining the utilization of Artificial Intelligence (AI) and 
Machine Learning (ML) in renewable energy holds 
significant value for various purposes. It addresses the urgent 
need for sustainable energy solutions by exploring how AI 
and machine learning technologies could enhance the 
effectiveness, reliability, and expandability of renewable 
energy systems [132]–[134]. Furthermore, this publication 
illuminates the interdisciplinary nature of this emerging field, 
connecting renewable energy research with advancements in 
artificial intelligence and machine learning. Through 
synthesizing the latest research and emphasizing key patterns 
and challenges, it educates policymakers, industry 
stakeholders, and decision-makers on the potential outcomes 
of implementing AI and ML in renewable energy. A review 
article serves as a valuable educational tool for students, 
researchers, and professionals looking to enhance their 
knowledge of renewable energy and AI/ML applications. In 
general, writing a review article on this topic helps to expand 
understanding, inspire creativity, and accelerate the shift 
toward clean and sustainable energy.  

II. MATERIAL AND METHODS 

When looking for scholarly articles on the subject for a 
review, the Boolean search tactics were employed. These 

tactics use keywords and operators like AND, OR, and NOT 
to filter search results. A researcher starts by combining 
keywords linked to artificial intelligence and machine 
learning with those connected to renewable energy, utilizing 
"or" to include synonyms or similar phrases to capture a 
broader range of relevant articles. To ensure a thorough 
search, they may include related topics or technologies such 
as deep learning, neural networks, solar, wind, hydro, or 
biomass was employed. 

For searching particular applications of AI and ML in 
renewable energy, such as optimization, energy management, 
forecasting, or grid integration, these phrases were employed. 
Incorporating terminology associated with particular 
technologies or applications in the AI, ML, and renewable 
energy domains, such as smart grids, energy storage, or 
predictive maintenance, might also be advantageous. To 
discover the most recent study, the most recent years in their 
search were included. Combining these tactics allows a 
researcher to do a comprehensive search that covers all areas 
of their subject. However, the effectiveness of their search is 
heavily reliant on the database or digital library being utilized. 
Each platform has its syntax for Boolean searches; thus, the 
same was employed on platforms such as IEEE Xplore, 
Scopus, or Google Scholar. The related papers published in 
recent years have been growing at a good pace. The 
relationship between different terms in this domain is depicted 
in Fig. 2 [135].   

 

 
Fig. 2  An overview of ML and energy systems [135] 

 

III. RESULTS AND DISCUSSION 

A. AI and ML Techniques in Renewable Energy Forecasting 

1) Solar Power Forecasting:  

The radiant energy of the sun is referred to as solar energy 
[136]. This energy is produced by the thermonuclear fusion of 

hydrogen gas, which results in massive amounts of 
electromagnetic energy. There is an average solar radiation 
intensity of 1367 W/m2 on the surface of the planet, and the 
total global absorption of solar energy is around 1.8 × 1011 
MW [137]. This amount of energy that is both ubiquitous and 
unlimited is more than sufficient to take care of the power 
requirements of the whole globe [138], [139].  The pursuit of 
a kind of energy that is both environmentally friendly and 
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sustainable has quickly become a serious worldwide concern, 
especially in the world that we live in today [140]. The fast 
collapse of conventional energy sources such as oil and fossil 
fuels, together with worldwide environmental issues such as 
global warming and the increased need for electricity and 
energy, are the primary factors that have led to the emergence 
of this crisis [141]. Solar photovoltaic cells are the most 
widely used and well-established green energy systems 
[142]–[144], which are employed to meet the growing need 
for energy on a worldwide scale. This is because solar PV 
cells are among the many environmentally friendly and 
renewable energy technologies that are now accessible [145], 
[146]. In the same way that other energy sources have their 
flaws, solar photovoltaic cells have their shortcomings and 
face a great deal of difficulty throughout the integration 
process [126], [147], [148]. Solar photovoltaic cells, on the 
other hand, are presently being employed in a tremendous 
variety of contemporary applications as a result of quick 
technical developments [149], [150]. Some systems create 
just a few watts, whereas others generate megawatts of 
electricity on a daily capacity [151], [152].  

In the field of solar energy, the use of machine learning has 
grown more important since it provides innovative 
approaches to improvements in output and efficiency [153]. 
The use of solar energy is becoming more dependable and 
simpler to incorporate into current power networks as a result 
of advancements in predictive analytics and panel layout 
optimization [154], [155]. Machine learning has made 
significant strides in the field of solar energy, and one of its 
most important applications is in predictive analytics [156]. 
The ability of machine learning algorithms to anticipate solar 
power output with exceptional accuracy is achieved by the 
study of historical weather patterns, levels of solar radiation, 
and a variety of environmental factors [157], [158]. The 
capacity to operate the grid effectively requires this skill, 
which enables solar energy to be integrated more effectively 
with other sources of electricity. When it comes to 
guaranteeing a steady energy supply and lowering 
dependency on non-renewable energy backups, forecasting is 
an essential component. This, in turn, encourages the use of 
solar energy to a greater extent [159]–[161]. A typical work 
flow of solar power forecasting using ML is depicted in Fig. 
3 [162].  

 

 

Fig. 3  A typical work flow of solar power forecasting using ML [162] 

Machine learning is very necessary in order to maximize 
the efficiency of the positioning and orientation of solar 
panels [163], [164]. By analyzing the patterns of sunshine, the 
topography, and other geographical aspects, machine learning 

algorithms are able to provide recommendations for the 
optimal locations and angles for the deployment of solar 
panels in order to maximize energy capture [165], [166]. 
When this process is optimized, not only does it increase the 
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efficiency of solar farms, but it also ensures that smaller, 
dispersed installations such as rooftop panels make a 
significant contribution to the production of electricity [167], 
[168]. An additional benefit of machine learning is that it 
assists with the maintenance and operation of solar power 
plants [169]. It is able to predict equipment faults or detect 
when solar panels are not performing properly due to dirt 
accumulation, damage, or other issues. Additionally, it can 
detect when solar panels are not functioning ideally. Through 
the use of predictive maintenance skills, issues may be 
rectified in a proactive manner, hence minimizing the chance 
of downtime and maximizing the effectiveness and durability 
of solar energy systems [170]–[172].  

The creation of solar cells that are more efficient is another 
area in which machine-learning techniques aid [173]. The use 
of machine learning in the examination of vast amounts of 
data pertaining to the characteristics of materials and the 

designs of solar cells may reveal patterns and connections that 
human researchers would overlook, which ultimately leads to 
breakthroughs in solar cell technology [174], [175]. The 
results of this research might result in the creation of solar 
panels that are more efficient in terms of cost, which could 
hasten the process of solar electricity being more widely used 
[176]–[178].  

In essence, the use of machine learning in solar energy is a 
major innovation that has the potential to improve the 
accessibility, efficiency, and integration of renewable energy 
into our energy systems [179]. It is projected that the use of 
machine learning technology in solar energy will increase as 
a result of its improvement, which will result in the creation 
of more inventive solutions in the field of renewable energy 
technologies [180], [181]. The following (Table II) is the 
summary of the use of different ML techniques in the domain 
of solar energy:  

TABLE II 
APPLICATION OF ML TECHNIQUES IN THE SOLAR ENERGY DOMAIN 

Main theme ML technique Main outcome Source 

Prediction of daily solar 
radiation  

Multiple MLs Artificial neural network (ANN) was 
superior to other test ML techniques  

[182] 

Daily solar radiation 
mapping  

Six ML techniques  Extreme learning machine (ELM) combined 
with particle swarm optimization provided 
the best predictions among six test MLs 

[183] 

Prediction of daily and 
monthly solar radiations  

ANN, support vector machines (SVM), adaptive 
neuro-fuzzy inference system (ANFIS), Gaussian 
process regression (GPR), Multiple linear 
regression (MLR), Radial basis function (RBF) 

With a mean absolute percentage error 
(MAPE) of 5.1% and a root mean squared 
error (RMSE) of 0.29, the RBF model was 
able to predict solar radiation efficiently.    

[184] 

Use of Pearson correlation 
for solar energy forecasting  

Random forest (RF), ANN, LR and SVM  ANN was superior with robust predictions  [185] 

Photovoltaic (PV) power 
forecasting  

GPR and SVM  Matern 5/2 GPR was superior in forecasting  [186] 

Site selection and power 
forecasting using ML  

Long short-term memory (LSTM), Gated 
recurrent unit (GRU), ANN 

ML models outperformed conventional 
approaches by as much as 38% in the site 
adaptation test. 

[187] 

Comparative analysis of ML 
and conventional 
approaches for solar 
radiation and PV power  

Maxwell and transportation models, SVM, RF 
RNN, LSTM, and GRU  

The best prediction was by LSTM and 
GRU.  

[188] 

Application of multiple MLs 
for solar radiation  

SVM, LSTM, GPR, ELM, and k-nearest 
neighbor (KNN) 

LSTM and GPR could provide the best 
prediction results.   

[189] 

 
The incorporation of machine learning (ML) into solar 

energy systems ushers in a new age of efficiency and 
sustainability in the field of renewable energy [190]. The solar 
business is overcoming conventional difficulties, maximizing 
energy output, and improving system maintenance by using 
the predictive capabilities of machine learning (ML) [191]–
[193]. Solar energy can be more successfully incorporated 
into the global energy mix thanks to the ability of machine 
learning to evaluate and learn from enormous quantities of 
data. This will result in a reduction in dependency on fossil 
fuels and will help mitigate climate change. The role that 
machine learning technologies play in enhancing the 
efficiency and dependability of solar energy systems will 
likely expand as these technologies continue to advance 
[194], [195]. This holds the promise of a more positive and 
environmentally friendly future powered by renewable energy 
[196]–[198]. 

 

2) Biofuel-based Energy Forecasting  

As the principal source of energy, traditional fossil fuels 
continue to hold a dominant position [199]. Because of the 
ever-increasing demand and the ever-increasing population of 
the world, the dwindling stocks of fossil fuels provide a 
problem for the future supply of these resources [200], [201]. 
The ever-increasing need for energy may be satisfied by the 
effective production of biofuel that could be used for 
transportation means [202], [203]. The problem is further 
attenuated by the increasing greenhouse gases (GHGs) caused 
by the use of fossil fuels [199], [204]. Taking a holistic 
approach to addressing global environmental concerns and 
advancing sustainable development may be accomplished by 
analyzing the relationship between the Sustainable 
Development Goals (SDGs), the achievement of net-zero 
emissions, the exploration of alternative fuels, and the 
distinctive contribution of biodiesel [205], [206]. There is a 
need for several measures to combat climate change, reduce 
emissions, and ensure that everyone has access to sustainable 
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energy sources [207], [208]. This interconnection underscores 
the need for these initiatives [117], [209]–[211].  

Goal 7 of the Sustainable Development Goals, which 
focuses on providing affordable and clean energy, and Goal 
13 of the Sustainable Development Goals, which focuses on 
climate action, offer the foundation for a global transition to 
renewable energy sources and reducing carbon footprints 
[212]. Maintaining a balance between the greenhouse gases 
that are released into the atmosphere and those that are 
removed from the atmosphere is an essential component of 
achieving net-zero emissions, which will contribute to a 
future that is both sustainable and climate-resilient. The 
investigation of alternative fuels, such as biodiesel, biogas, 
bioethanol, and furan, is vital in the process of shifting to more 
sustainable choices that have the potential to successfully 
reduce emissions from transportation [213]–[216], which is a 
significant contributor to global greenhouse gas emissions [7], 
[217], [218].  

The practical application of these relationships is shown by 
biodiesel, which is a sustainable biofuel that may be generated 
from vegetable oils, animal fats, or recycled cooking grease 
[219], [220]. In comparison to conventional fossil fuels, this 
product is not only non-toxic but also biodegradable and 
produces far less emissions. Making the switch from 
conventional fuels to biodiesel may be of great assistance to 
nations in achieving their net-zero objectives, improving 
energy security, reducing their dependency on imported fuels, 
and providing support to the local agricultural and recycling 
industries [221][222]. As an additional point of interest, the 
production and consumption of biodiesel contributes to 
Sustainable Development Goal 12 (Responsible Consumption 
and Production) by promoting resource efficiency and 
reducing waste. SDG 8 is advanced via the creation of job 
opportunities in the area of renewable energy, while SDG 9 is 
advanced through the promotion of scientific developments in 
the production and consumption of biofuels. Both of these 
goals are advanced through the inclusion into the energy mix 
[6], [23], [223].  

The use of machine learning, a subfield of artificial 
intelligence, has revolutionized a wide range of sectors via the 
analysis of enormous amounts of data and the generation of 
predictions or judgments without the need for explicit 
programming for specific tasks [224]. The applications of this 
technology span a broad variety of domains, with the primary 
emphasis being placed on forecasting engine performance and 
emission frameworks, in addition to optimization. 

When it comes to the performance of engines and the 
emissions they produce, machine learning algorithms are 
applied to foresee and improve engine operations in various 
circumstances. The engine's efficiency, the amount of fuel it 
uses, and the pollution levels may all be predicted by these 
algorithms via the analysis of sensor data and historical 
performance reports [225]–[227]. The literature reveals that 
engine researchers mainly focused on engine performance 
metrics like brake thermal efficiency (BTE), brake-specific 
fuel/energy consumption (BSFC/BSEC), peak cylinder 
pressure (PCP), and heat release rate (HRR) [228]–[232]. 
Also, on the emission side oxides of nitrogen (NOx), carbon 
mono oxide (CO), unburnt hydrocarbons (UHC), and carbon 
dioxide (CO2), particulate matter (PM) [233]–[236] were 
reported. However, these parameters are quite sensitive to 

changes in engine operating parameters like compression 
ratio, fuel supply, fuel injection parameters, and engine 
hardware [237], [238]. The conventional methods of 
simulation and modeling are time-consuming and tiresome. 
Also, to support global activities aimed at lowering carbon 
footprints and tackling climate change, it is vital to place a 
primary emphasis on the development of engines that are both 
sustainable and efficient [239]–[241]. The use of machine 
learning models enables the modeling of a variety of 
situations, which in turn reveals ideal configurations that 
conventional experimentation techniques would overlook. 
Machine learning finds applications in mainly two domains: 
firstly, the model-prediction of engine performance and 
emission framework, and secondly in the optimization [242]. 
Some studies showed the usefulness and applicability of ML 
in this domain to effectively apply ANN for model and 
prediction of engine performance and emissions [110], [238], 
[243]. It could be observed that ANN was mainly used in this 
domain. Besides this other ML techniques like ANFIS [244], 
[245], XGBoost [246], GPR [247], Gene expression 
programming (GEP) [248], [249], SVM, and RF [250], [251] 
are being applied for model predictions.  

On the other hand, optimization is a prominent application 
field that focuses on using machine learning to enhance 
processes and systems in various industries. In many 
industries, including manufacturing, logistics, and energy 
distribution, machine learning algorithms are particularly 
adept at evaluating complex information to identify the most 
efficient routes, production schedules, and distribution 
management techniques [242][252]. We can save costs and 
decrease our environmental impact if we optimize our 
performance. The use of machine learning to improve diesel 
engines that are fuelled by biodiesel includes predictive 
modeling, optimization of fuel injection, modeling of 
combustion, fault detection, and optimum control techniques 
[253], [254]. As an example, machine learning algorithms 
scrutinize biodiesel blends' compositions, the engine's state, 
and environmental elements to anticipate performance and 
emissions. Through the use of sophisticated models that 
mimic combustion in a variety of settings, they fine-tune the 
timing and pressure of fuel injection to maximize combustion 
efficiency. When it comes to defect detection, machine 
learning enables the rapid identification of abnormalities, 
which in turn facilitates the fast repair of infrastructure. 
Continuous optimization of engine settings is performed to 
improve fuel economy and lower emissions via the use of 
optimum control systems [255]. Machine learning enhances 
the performance of biodiesel engines, which results in these 
engines being more environmentally friendly and efficient 
than conventional diesel engines.  

Even though the biofuel business has the potential to make 
a substantial contribution to the development of sustainable 
energy solutions, it is often confronted with several 
challenges that prevent its expansion and general adoption 
[256], [257]. The dispute that is usually referred to as the 
"food versus fuel" debate is a serious topic since it involves 
the struggle for agricultural land and water resources between 
biofuel production and food production [258]. There is a 
possibility that this rivalry may lead to a rise in the cost of 
food and will inspire concerns about food security, especially 
in regions with a scarcity of agricultural resources. 
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Furthermore, biofuels' consequences on the ecosystem are a 
complicated topic. Even though they could reduce greenhouse 
gas emissions in contrast to fossil fuels, the benefits can be 
nullified by the carbon footprint associated with changes in 
land use, farming, and the manufacturing of biofuels [259], 
[260]. Deforestation and a reduction in biodiversity are two 
consequences that might result from the transformation of 
land for the cultivation of biofuel crops under certain 
circumstances [261]–[263]. 

There is one additional challenge to take into consideration, 
and that is the financial viability of biofuels [264][265]. 
Biofuels typically depend on government subsidies and policy 
support to compete with conventional fuels. As a result of 
fluctuations in oil prices, the cost-competitiveness of biofuels 
might be affected, which can result in unclear market 
prospects [266]–[268]. In addition, the biofuel industry 
requires significant advancements in both technology and 
infrastructure to improve efficiency and reduce costs [269], 

[270]. This includes the production of biofuels from non-food 
sources such as agricultural waste and algae, as well as the 
establishment of the necessary distribution and retailing 
networks to make biofuels accessible to consumers [271], 
[272]. Last but not least, it is essential to consider the social 
and ethical issues, such as the impact that widespread biofuel 
production has on the communities located nearby, the rights 
of landowners, and the development of rural areas. To 
successfully address these difficulties, it is essential to adopt 
a holistic strategy that considers the economic, 
environmental, and social elements of the production and use 
of biofuels. In this way, it will be possible to guarantee that 
the expansion of the biofuel business plays a positive part in 
the global move toward energy systems that are both 
sustainable and environmentally friendly [273]. A typical 
flow chart showing the application of intelligent approaches 
in this domain is depicted in Fig. 4 [274].  

 

Fig. 4  Application of intelligent approaches in the biofuel domain [274] 

The biofuel sector has a wide variety of challenges, and 
machine learning offers several intriguing opportunities to 
address and overcome these challenges. Through data 
analysis and predictive modeling, machine learning has the 
potential to enhance the efficiency, sustainability, and 
economic viability of the production and consumption of 
biofuels. Here are some of the ways that machine learning 
might be beneficial to the biofuel industry:  

 Large amounts of agricultural data, including weather 
patterns, soil conditions, and crop health, may be 
examined with the use of machine learning algorithms 
to anticipate and improve crop yields, notably for the 
production of biofuels [275]. By optimizing this 
process, we can solve the argument over the "food 

versus fuel" issue by increasing the efficiency of the 
production of biofuel crops. Consequently, this might 
result in the creation of greater output with less amount 
of land, thus protecting more area for the production of 
food.  

 Through the use of machine learning models, one may 
improve their understanding of the complex 
biochemical processes that are involved in the synthesis 
of biofuels [276]. Due to the fact that these models are 
able to forecast the most efficient processing methods 
and ideal conditions for converting biomass into 
biofuels, they are able to reduce the amount of energy 
that is used and the amount of waste that is produced 
throughout the manufacturing process [277]. The 
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manufacture of biofuels has the potential to have a 
smaller carbon footprint and fewer negative impacts on 
the environment if artificial intelligence is used to 
optimize these methods.  

 By using machine learning, the process of developing 
advanced biofuels from non-food sources such as 
agricultural residue, algae, and cellulosic materials may 
be accelerated, resulting in much faster advancement. 
The most advantageous feedstocks and growing 
techniques may be identified by machine learning 
algorithms via the examination of genetic data and 
growth circumstances. This helps to improve 
sustainability and reduce the amount of rivalry with 
food production [278].  

 It is possible to develop accurate projections for biofuel 
demand, pricing, and competitiveness by using 
machine learning algorithms to undertake an analysis 
of market patterns, oil prices, and policy influences. To 
improve the economic viability of biofuels, this 
research may be of assistance to biofuel producers and 
investors in making choices that are well-informed, 
getting finance, and reacting to changing market 
circumstances [279].  

 For biofuels to be widely used, it is necessary to ensure 
that they are distributed effectively from production 
facilities to end-users. Machine learning has the 
potential to improve logistics and supply chain 
operations, resulting in reduced transportation costs and 
emissions. Additionally, it will ensure that biofuels are 
delivered to high-demand markets in an efficient 
manner [280].  

 Machine learning algorithms are able to evaluate the 
environmental consequences of biofuels over their 
whole lifespan. These effects include but are not limited 
to changes in land usage, water consumption, and 
emissions of greenhouse gases [281].  

By addressing these difficulties, machine learning 
improves the efficiency and long-term viability of the biofuel 
business and contributes to the sector's growth and integration 
into the global energy environment. With the ongoing 
development of machine learning technologies, it is 
anticipated that their influence on the biofuel business will 
increase dramatically, ultimately resulting in the creation of 
more environmentally friendly and economically viable 
biofuel solutions. Table III lists the summary of the 
application of different ML techniques in the domain of solar 
energy:  

TABLE III 
APPLICATION OF ML TECHNIQUES IN THE BIOFUEL ENERGY DOMAIN 

Main theme ML technique Main outcome Source 

Prediction of biodiesel 
characteristics and fatty acid 
profile  

LR, RF, XGboost, and SVM  Using a machine learning framework to forecast biodiesel 
fuel properties based on its fatty acid composition 

[282] 

Predictive modeling of 
biodiesel production  

RF and AdaBoost  AdaBoost was efficient in the optimization of process 
parameters   

[283] 

Model forecasting of engine 
operation  

ANN and response surface 
methodology  

The study uncovered that ANN-RSM is a valuable hybrid 
technique for model- prediction. 

[284] 

Evaluation and forecasting to 
determine biodiesel purity  

Alternating model tree, RF, MLP-
ANN, and least median square  

Results reveal that the AMT stands out as the top 
forecasting technique.  

[285] 

Forecasting of biodiesel 
production  

Bayesian-optimized SVR and 
ANN 

Hybrid SVR approach outperformed the other approach  [286] 

Model-prediction of engine 
performance  

ANN-Fuzzy  The hybrid approach could accurately predict the engine 
performance  

[287] 

The modeling forecasting of 
biofuel-powered engine  

ANN-Genetic algorithm – RSM A triple-blended biofuel-powered engine performance 
could be modeled with more than 90% accuracy.   

[288] 

Emission and performance 
prediction of engine running 
on biofuel blends  

ANN-RSM It was observed that RSM could optimize, and ANN 
could accurately predict the biofuel-powered engine.  

[289] 

Using machine learning (ML) in the biofuel industry is a 
significant step toward creating an energy environment that is 
more environmentally friendly and efficient. Artificial 
intelligence (ML) provides exciting solutions for tackling 
issues in the biofuel business because of its capacity to 
evaluate big datasets, forecast results, and enhance 
procedures. Machine learning is vital for the economic and 
environmental success of biofuel production since it allows 
for the optimization of crop yields, the enhancement of 
production procedures, and the development of new 
feedstocks. In addition, machine learning makes it possible to 
do market research, optimize supply chain operations, and 
evaluate environmental impact, which provides stakeholders 
along the biofuel value chain with helpful information [290]. 
As the need for renewable energy continues to rise, the role 
that machine learning plays in fostering innovation and 
speeding the adoption of biofuels is becoming more critical. 

To unlock the full possibilities of machine learning in the 
biofuel business, academics, industry participants, and 
policymakers will need to collaborate to overcome 
technological, economic, and regulatory constraints. Biofuels 
that have been enhanced via ML-based optimization and 
innovation might make a big contribution to the transition to 
a more sustainable energy future [291], [292]. This is because 
considerable focus has been placed on addressing difficulties, 
which has led to breakthroughs in machine learning 
technology.  

3) Biomass Energy Forecasting 

A comprehensive approach to combating climate change 
and achieving sustainable development goals may be 
accomplished by investigating the relationship between 
biomass usage, the pursuit of net-zero emissions, the 
generation of renewable energy, and the reduction of 
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greenhouse gas emissions [293]–[295]. Energy generation 
may benefit greatly from the use of organic materials such as 
agricultural leftovers, by-products of forestry, and crops 
cultivated explicitly for energy production. In addition to 
facilitating the transition to a low-carbon economy, they 
provide a variety of strategies for reducing greenhouse gas 
emissions [296]–[298].  

One of the most critical aspects of this synergy is the 
concept of biomass as a source of energy that is either carbon-
negative or carbon-neutral [299], [300]. During the process of 
photosynthesis, biomass crops can remove carbon dioxide 
from the atmosphere when they are handled correctly. A 
closed carbon cycle is completed when these materials are 
converted into bioenergy by processes such as combustion, 
gasification, or anaerobic digestion [301]–[304]. By these 
processes, carbon dioxide is released into the atmosphere. As 
a result of this process, carbon absorption and release are 
brought into equilibrium, which ultimately results in either 
net-zero emissions or maybe even net-negative emissions 
when biomass residues are used as fuel by the process [106], 
[305]. As an additional benefit, biofuels that are generated 
from biomass, such as biodiesel and bioethanol, provide 
environmentally friendly alternatives for the transportation 
and industrial sectors, resulting in a significant reduction in 
emissions of greenhouse gases. These biofuels have the 
potential to be combined with conventional fuels or employed 
in machines and power plants that are designed specifically 
for that purpose [306]. This provides an energy source that is 
less harmful to the environment and has a longer lifespan 
while also promoting energy independence and safeguarding 
the environment [307]–[310].  

The storage of carbon dioxide in long-lasting biomass 
products or the use of carbon capture and storage (CCS) 
technology are two ways in which biomass energy systems 
may function as carbon sinks in addition to their ability to 
reduce direct greenhouse gas emissions [259]. Biochar, for 
example, is a stable form of carbon that is produced by the 
pyrolysis of biomass. When applied as a soil supplement, 
biochar can potentially increase soil fertility and carbon 
sequestration properties [311], [312]. Similarly, CCS systems 
can sequester carbon dioxide (CO2) emissions from biomass 
power plants or bioenergy facilities beneath the ground, 
effectively removing carbon from the atmosphere [313], 
[314]. In addition, biomass energy is compatible with other 
renewable energy sources, such as solar and wind power, and 
it provides reliable electricity production, which contributes 
to the maintenance of grid stability and the fulfillment of 
shifting energy needs [212]. Because power plants that use 
biomass can quickly modify their output to complement 
intermittent renewable sources, they are able to provide a 
consistent energy supply and reduce the need for backup 
power from fossil fuels [315], [316]. Additionally, sustainable 
land management techniques are included in the relationship 
between the use of biomass and the reduction of greenhouse 
gas emissions [317], [318]. This connection extends beyond 
the production of electricity. For the purpose of increasing 
biomass production, improving carbon sequestration, and 
promoting biodiversity conservation, the implementation of 
agroforestry, reforestation, and afforestation initiatives might 
be beneficial. The production of biomass in conjunction with 
environmentally responsible land management methods is an 

approach that plays a significant part in bolstering the 
resilience of ecosystems and aiding attempts to adapt to 
climate change [319], [320].  

Therefore, it is vital to carefully examine sustainability 
criteria to fully harness the potential of biomass in terms of 
achieving net-zero emissions and mitigating greenhouse gas 
emissions [321]. When it comes to producing sustainable 
biomass, it is of the utmost importance to prioritize preserving 
the environment, preserving biodiversity, and the promotion 
of social fairness. This should be done without disrupting food 
production or the natural ecosystems. When it comes to 
ensuring the responsible sourcing and exploitation of 
biomass, it is essential to establish certification programs that 
are open and transparent, robust regulatory frameworks, and 
the participation of stakeholders [322]–[324].  

The use of biomass, the pursuit of net-zero emissions, the 
implementation of renewable energy, and the reduction of 
greenhouse gas emissions constitute a holistic strategy for 
combating climate change and furthering sustainable 
development [325]. Exploring biomass energy systems may 
provide a flexible and sustainable energy source that plays a 
vital part in reducing greenhouse gas emissions, assisting in 
the transition towards a low-carbon economy, and enhancing 
the resilience of ecosystems [326], [327]. Through the 
strategic usage of biomass in a way that is both sustainable 
and integrated, communities have the opportunity to achieve 
ambitious climate targets while simultaneously fostering 
economic growth, energy stability, and environmental 
conservation [328], [329].  

Even though biomass energy has the potential to be a 
source of renewable energy, the industry faces several severe 
hurdles that prevent it from being widely adopted and from 
being scalable [330], [331]. One of the most significant 
challenges is the rivalry for biomass resources that exists 
between other industries, such as the production of food and 
the preservation of land [332], [333]. The "food versus fuel" 
debate is sparked when agricultural land formerly used for 
food production is diverted to produce energy crops [294], 
[334]. This raises concerns about food security, changes in 
land usage, and deforestation. It is necessary to engage in 
careful land-use planning and sustainable management 
methods to avoid unfavorable impacts on the environment and 
society and achieve a balance between biomass production for 
energy and other essential requirements [335]–[337].  

The variable nature of biomass feedstocks and their 
accessibility is another challenge the biomass energy business 
must contend with [338]. The availability of biomass is 
affected by seasonal variables, weather conditions, and 
agricultural cycles, in contrast to fossil fuels, which can be 
collected and stored for lengthy periods [339]. Because of this 
fluctuation, there are uncertainties in the supply chains of 
biomass, which ultimately affects the reliability and cost-
efficiency of the generation of biomass energy. When it 
comes to the logistics and transportation of biomass 
feedstock, issues arise, especially in rural and distant places 
that have little or inadequate infrastructure [340], [341].  

In addition, the widespread adoption of biomass energy 
systems is hampered by difficulties of technological and 
technical character. Combustion, gasification, and anaerobic 
digestion are examples of technologies that may be used to 
convert biomass [342][343]. These technologies need 
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sophisticated machinery and complex procedures, which can 
be costly to set up. Because the use of either inefficient or 
obsolete technologies may impede the economic viability of 
biomass energy projects, efficiency and scalability are two of 
the most important elements to consider. The inclusion of 
biomass energy into existing energy systems and grids 
involves some technological challenges, particularly about 
grid stability, energy storage, and system flexibility [344], 
[345]. This is especially true when biomass is exploited in 
conjunction with intermittent renewable energy sources such 
as solar and wind power.  

Addressing the issue of environmental sustainability 
continues to be a big concern for business that deals with 
biomass energy [346], [347]. However, inappropriate ways of 
producing and using biomass may lead to undesirable 
environmental impacts such as deforestation, soil 
degradation, and the loss of biodiversity. This is even though 
biomass has the potential to reduce greenhouse gas emissions 
in contrast to fossil fuels [348]. The implementation of 
stringent sustainability standards, the performance of 
lifecycle assessments, and the establishment of regulatory 
frameworks to guarantee the responsible sourcing, 
production, and utilization of biomass feedstocks are all 
necessary steps to take to ensure that the environmental 
benefits of biomass energy are balanced with its potential 
environmental drawbacks.  

Several factors play a key role in determining the growth 
and development of the biomass energy industry, including 
economic and regulatory problems. There are several factors 
that might present obstacles to the development of biomass 
energy projects and investments, including policy 
frameworks, government backing, and changes in the energy 
market [349], [350]. Additionally, the lack of financial 
incentives and market strategies to capitalize on the 
environmental and social benefits of biomass energy adds to 
the complexity of its economic viability and attraction to 
investors. This is because there are no market methods to 
profit from these benefits [351], [352].  

In order to effectively address these difficulties, a complete 
approach is required, one that incorporates technical 
improvements, regulatory support, the participation of 
stakeholders, and sustainable management practices [353]. 
By overcoming these challenges, the biomass energy industry 
has the potential to have a stronger influence in the fight 
against climate change, the enhancement of energy security, 
and the promotion of sustainable development [354]. Machine 
learning offers promising solutions for overcoming the many 
challenges that the biomass energy business faces, to enhance 
its efficiency, environmental friendliness, and viability from 
a financial standpoint [355], [356]. Machine learning may 
help handle these difficulties in a number of different ways, 
including the following:  
 Improving the Management of Biomass Resources: 

Machine learning algorithms are able to analyze a wide 
variety of data sources, including satellite imaging, 
climate data, and soil information, in order to improve the 
management of biomass resources [357]. An 
improvement in decision-making about land usage, crop 
selection, and harvest schedules may be supported by 
machine learning [358]–[360]. This can be accomplished 
via the study of biomass availability, growth patterns, and 

quality. The goal is to increase biomass output while 
simultaneously reducing environmental damage [361].  

 Improving the Logistics of the Biomass Supply Chain: 
Machine learning has the potential to improve the logistics 
of the biomass supply chain by predicting demand, 
optimizing routes, and scheduling operations in an 
efficient manner. In the end, machine learning algorithms 
have the potential to improve inventory management, 
reduce transportation costs, and reduce the amount of 
biomass that is lost during storage and transit. This will 
eventually lead to an increase in the efficiency of the 
generation of biomass energy [322], [362].  

 Improving the Processes of Biomass Conversion: 
Machine learning has the potential to improve the 
efficiency and functionality of several technologies that 
are used for the conversion of biomass [363]. These 
technologies include combustion, gasification, and 
analytical digestion. Machine learning algorithms may 
improve operating parameters, discover abnormalities, 
and anticipate equipment problems by analyzing process 
data and sensor readings [364], [365]. This eventually 
results in a reduction in downtime and an increase in 
energy output. It is also possible for machine learning to 
assist in the development of technologies for the 
conversion of biomass by accelerating the identification of 
materials, the optimization of processes, and the 
enhancement of designs [366], [367]. 

 Support for environmental sustainability: With the use of 
machine learning, environmental sustainability may be 
supported. Machine learning can assist in the prediction of 
environmental consequences, the optimization of land use, 
and the assistance of regulatory compliance for 
sustainable biomass production and consumption methods 
[368], [369]. Machine learning algorithms can analyze the 
environmental effects of biomass energy projects by 
conducting an analysis of environmental data and 
simulating ecosystem dynamics [370], [371]. The planning 
of land use and the formulation of policies may both benefit 
from this knowledge. In addition, machine learning may be 
of assistance in the monitoring and protection of 
ecosystems, providing support for projects that aim to 
preserve sustainable biomass production while also being 
responsible to society and the environment [372].  

 Providing Assistance with Market Analysis and Policy 
Development: Machine learning can analyze market 
patterns, assess the consequences of policies, and provide 
assistance with decision-making about investments in 
biomass energy and formulation of policies [373], [374]. 
Machine learning algorithms can identify market 
opportunities, estimate energy demand, and assess the 
economic viability of biomass energy projects. This is 
accomplished by studying market data, customer 
preferences, and regulatory frameworks. Furthermore, 
machine learning may be used to aid in policy analysis and 
scenario modeling [375], [376]. This can provide 
policymakers with insights into the possible implications 
of different policy interventions and assist in developing 
effective strategies for increasing the use of biomass 
energy.  

A summary of different ML techniques used for biomass 
energy is listed in Table IV.  
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TABLE IV 
APPLICATION OF ML TECHNIQUES IN THE BIOMASS ENERGY DOMAIN 

Main theme   Machine learning technique Main result  Source 

Biochar yield from biomass.   RF and Gradient boosting 
regression (GBR)  

The coefficient of determinates (R2) was in the 
range of 0.89 to 0.94 

[377] 

Biomass to hydrogen production and 
its prediction  

LR, KNN, SVM, and DT  LR was best in model prediction.  [378] 

Algal biomass to biochar yield  XGBoost  R2 was 0.84 [379] 

Biomass pyrolysis yield prediction  GBR and RF  GBR was superior to RF with R2 in the range of 0.9 
to 0.95  

[380] 

Biomass and coal co-pyrolysis and 
output prediction  

Extra-Trees (ET) and RF  ET was better owing to lower errors and improved 
generalization  

[381] 

Prediction of biomass-derived 
biochar   

ANN and ANFIS ANN was superior to ANFIS with R2 in the range 
of 0.964.   

[382] 

Use of biomass-derived biochar for 
water remediation   

Support vector machine (SVM), 
ANN, and RF  

RF was superior to ANN and SVM with a 
forecasting accuracy of 94.89%.  

[383] 

Biomass to hydrogen production 
prediction   

DT, GPR, and ELT with GA and 
PSO  

The ELT-PSO outperformed other models by 
achieving the R2 = 0.99 

[384] 

Biomass to biochar production 
prediction  

MLR, SVM, DT, RF, and KNN The random forest model was the best-performing 
model.   

[385] 

Biomass to syngas production  Multi-layer perceptron ANN Bayesian-optimized ANN could predict with high 
accuracy.   

[386] 

In general, machine learning offers a variety of 
opportunities to solve difficulties that are often encountered 
in the biomass energy business. These include the 
enhancement of resource management, supply chain logistics, 
conversion processes, and environmental sustainability. 
Through the use of machine learning technology, the biomass 
energy business has the potential to uncover novel 
opportunities for progress, efficiency, and environmental 
friendliness, so contributing to the transition towards a more 
sustainable and strong energy landscape [12], [14].  

B. Future Perspectives and Challenges  

An investigation into the use of machine learning (ML) 
techniques in the area of renewable energy indicates a future 
that is both complicated and exciting, with a variety of views 
and obstacles. To successfully navigate the route towards 
renewable energy systems that are more efficient, reliable, 
and sustainable, boosted by machine learning technologies, it 
is essential to have a solid understanding of these dynamics.  

1) Future perspectives 

Recent Developments in Algorithms for ML: The 
development of machine learning in the field of renewable 
energy is contingent on developing sophisticated algorithms 
built expressly for the unique characteristics of renewable 
energy systems. Deep learning architectures, reinforcement 
learning approaches, and hybrid models are being 
investigated to improve the management of complex and 
nonlinear interactions in energy data [48], [387].  

Real-time predictive analytics: In the case of renewable 
energy systems, the improvement will be made possible via 
the use of machine learning technology, which will increase 
the accuracy of energy production, demand, and grid 
operations forecasting [12], [388]. The management of 
energy, the stability of the grid, and the inclusion of variable 
renewable energy sources like solar and wind power into 
existing power systems will all be improved as a result of this 
[389], [390].  

Autonomous energy system: It is anticipated that energy 
systems will evolve to be self-sufficient and driven by 

machine learning. These systems will be able to optimize 
themselves, adapt to changing conditions, and continue to be 
robust in the face of environmental shifts, variations in energy 
consumption, and market volatility. The purpose of these 
systems is to improve the efficiency of energy production, 
distribution, and consumption, with the eventual goal of 
fostering enhanced energy independence and sustainability 
[391], [392]. 

Integrated approach: Decentralized intelligence and 
decision-making inside renewable energy systems will be 
made possible via the process of connecting machine learning 
algorithms with Internet of Things sensors and edge 
computing technologies. Real-time monitoring, control, and 
optimization of energy assets at the local level will be made 
possible as a result of this, which will result in improving 
energy efficiency and grid resilience [393], [394].  

Collaboration: In the future, research will emphasize 
interdisciplinary cooperation among experts in renewable 
energy, data scientists, and domain specialists to develop 
complete solutions for the difficulties that are found at the 
intersection of energy, the environment, and society. 
Moreover, enhancing the awareness of understanding of the 
importance of environmental protection is very important 
[395]. Through collaborative efforts, we will be able to 
develop cutting-edge machine-learning applications that will 
have a substantial influence on the field of renewable energy.  

2) Challenges  

Quality and availability of data: Quantity and quality of the 
data that is accessible is one of the problems that must be 
overcome [396]. When it comes to using machine learning for 
renewable energy, one of the most significant challenges is 
the need for a large quantity of diverse data to properly train 
machine learning models [397]. It is very necessary to have 
access to data sets that are dependable, comprehensive, and 
representative to construct machine learning models that are 
accurate and robust for applications using renewable energy 
[398], [399].  

Understanding and Clarity: To establish trustworthy 
relationships with stakeholders and win their support, 
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machine learning models that are used in renewable energy 
systems need to be simple to understand and straightforward 
to comprehend. It will be vital to improve the 
understandability of machine learning models and explain the 
decision-making methods associated with them in order to 
ensure that they are widely accepted in energy planning, 
policy-making, and operational procedures [400], [401]. 

Scalability and Generalization: To be effective, machine 
learning algorithms need to be able to scale up and generalize 
over a wide range of geographical locations, climates, and 
renewable energy technologies. As a prerequisite for their use 
in real-world renewable energy systems, the development of 
machine learning solutions that are capable of scaling and 
adapting to a wide range of settings and data sources is 
essential.  

Energy efficiency: When it comes to machine learning 
algorithms and computer infrastructure, the consumption of 
energy may be a major worry because of the environmental 
and economic ramifications it has, especially when it is used 
on a big scale [402]. For the purpose of minimizing the impact 
that machine learning technologies have on the environment, 
it is vital to develop energy-efficient machine learning 
algorithms and hardware accelerators, as well as to fine-tune 
computing resources for applications that include renewable 
energy [403], [404]. 

Ethical issues: Take into account the following about the 
ethical and social impacts: Concerns surrounding privacy, 
prejudice, fairness, and accountability are raised when 
machine learning technologies are used in the field of 
renewable energy [405]. It is vital to develop ethical 
principles, legal frameworks, and governance structures to 
encourage the responsible and equitable application of 
machine learning technology in the field of renewable energy. 
This will allow for the resolution of these difficulties [406].  

To address these forthcoming opportunities and challenges, 
it is necessary for academics, policymakers, industry 
stakeholders, and members of civil society to work together. 
This will allow them to capitalize on the revolutionary 
influence that machine learning can have in driving renewable 
energy toward a more sustainable and equitable future ahead. 
By overcoming these challenges and making the most of the 
opportunities presented by machine learning, we will be able 
to accelerate the transition to a more sustainable energy 
environment that is driven by advancements in renewable 
energy [407].  

IV. CONCLUSION 

It is concluded that the use of AI and ML in the field of 
renewable energy, especially in biomass, biofuels, engines, 
and solar power, has the potential to substantially transform 
the energy industry. A significant amount of progress has 
been made in boosting efficiency, dependability, and 
sustainability in a variety of industries via the combination of 
artificial intelligence and machine learning technologies with 
renewable energy sources. When it comes to biomass and 
biofuels, developments in artificial intelligence and machine 
learning algorithms have significantly improved approaches 
to managing biomass resources, optimizing feedstock, and the 
generation of biofuels. Using data-driven insights and 
predictive analytics, researchers and industry stakeholders 
can improve the efficiency of the biofuel supply chain. This 

includes the growth and harvesting of crops, as well as the 
conversion of biomass and the synthesis of fuel. The 
optimization of this process not only increases the economic 
viability of biofuel production but also reduces the negative 
impacts on the environment and accelerates the transition 
toward a low-carbon economy.  

In addition, using artificial intelligence and machine 
learning in both engines and combustion systems has led to 
considerable improvements in engine performance, emissions 
reductions, and fuel economy improvements. These 
advancements have a significant potential to enhance the 
sustainability of transportation and power production, which 
will eventually contribute to the worldwide measures being 
undertaken to battle climate change and reduce harmful levels 
of air pollution. Artificial intelligence and machine learning 
are valuable tools within the solar energy sector, particularly 
in enhancing the efficiency and reliability of solar 
photovoltaic (PV) systems. Machine learning algorithms can 
analyze vast amounts of solar data, including irradiance 
levels, weather patterns, and system performance indicators, 
to improve the design, operation, and maintenance of 
photovoltaic (PV) systems. This optimization aims to 
optimize energy output, decrease downtime, and boost overall 
system efficiency. As a result, the cost-effectiveness and 
accessibility of solar energy will be increased.  

As we look to the future, it will be essential to continue 
research and innovation in artificial intelligence and machine 
learning for renewable energy to overcome the challenges that 
still exist and uncover new opportunities. To put these 
achievements into practice in a realistic manner and accelerate 
the global transition toward a sustainable energy future 
powered by renewable sources, it is vital to collaborate with 
academics, industrial partners, and policymakers. By using 
artificial intelligence and machine learning, we can build a 
more sustainable energy ecology for the generations who will 
come after us.  
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