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Abstract— In recent years, computer vision has experienced a surge in applications across various domains, including product and 

quality inspection, automatic surveillance, and robotics. This study proposes techniques to enhance vehicle object detection and 

classification using augmentation methods based on the YOLO (You Only Look Once) network. The primary objective of the trained 

model is to generate a local vehicle detection system for Malaysia which have the capacity to detect vehicles manufactured in Malaysia, 

adapt to the specific environmental factors in Malaysia, and accommodate varying lighting conditions prevalent in Malaysia. The 

dataset used for this paper to develop and evaluate the proposed system was provided by a highway company, which captured a 

comprehensive top-down view of the highway using a surveillance camera. Rigorous manual annotation was employed to ensure 

accurate annotations within the dataset. Various image augmentation techniques were also applied to enhance the dataset's diversity 

and improve the system's robustness. Experiments were conducted using different versions of the YOLO network, such as YOLOv5, 

YOLOv6, YOLOv7, and YOLOv8, each with varying hyperparameter settings. These experiments aimed to identify the optimal 

configuration for the given dataset. The experimental results demonstrated the superiority of YOLOv8 over other YOLO versions, 

achieving an impressive mean average precision of 97.9% for vehicle detection. Moreover, data augmentation effectively solves the 

issues of overfitting and data imbalance while providing diverse perspectives in the dataset. Future research can focus on optimizing 

computational efficiency for real-time applications and large-scale deployments. 
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I. INTRODUCTION

The increase in transportation has become a critical issue 
due to population growth, urbanization, and increased motor 

vehicle ownership. The high traffic density and increasing 

motor vehicle ownership inevitably cause numerous vehicle 

traffic problems, including but not limited to traffic 

congestion, public safety, environmental impact, illegal 

driving, and road planning issues. Therefore, Intelligent 

Transportation Systems (ITS) have drawn considerable 

attention and have become essential traffic aids for managing 

traffic issues. For example, traffic surveillance is one of the 

critical components in ITS, which can extract helpful traffic 

information from traffic image analysis and traffic flow 
control such as vehicle tracking and counting [1], license plate 

recognition [2], vehicle velocity [3], wrong-way vehicle 

detection [4] and so on. Besides, traffic surveillance can be 

derived as a traffic impact assessment system [5] to inform 

people about traffic activities and road conditions in any 

monitored area to solve traffic problems.  

Computer vision applications for the categorization of 

autonomous vehicles have a long history. Cameras are 

frequently deliberately positioned at vantage locations for 
computer vision-based systems to gather vehicle information 

in the region below from a top-to-bottom perspective, such as 

next to traffic signals, beneath flyovers, or on taller poles. In 

this case, a weatherproof and high-resolution surveillance 

camera is needed to capture images of the waiting area in 

different weather conditions. Low-resolution images and 

image distortion may lead to a wrong judgment in computer 

vision systems, like a human may have myopia. Dongbin 

Zhao [6] proposed a feature miming human visual attention 

by formulating a visual attention module with focused images 

with clear vital regions. A focused picture is created by 

emphasizing one area of an image while weakening the others 
using a visual attention-based image processing module. 

Although many different models can perform image 
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classification and achieve good results, but the emergence of 

YOLO has defeated many traditional models by achieved 

faster speed and higher [7], [8], [9], [10].  Hence, this article 

chooses to use YOLO as the main model architecture for 

better understand the improvements brought by different 

YOLO versions to image classification performance and 

different data enhancement techniques.  

Alamgir et al. [11] conducted a compresence of tests on 

yolov3 and yolov4 architecture to find out the most suitable 

architecture for traffic analysis and vehicle detection in 
Thailand. The authors emphasize that the performance of deep 

learning algorithms largely depends on the quality of the 

dataset, street type diversification and maintaining a balance 

of the labelled can effectively improve model performance. In 

another study conducted by Zuraimi et al. [12], a vehicle 

detection and tracking system was developed using YOLOv3 

and YOLOv4 but it can only classify 4 different types of 

vehicles. Neupane et al. [13] developed a real-time vehicle 

detection and tracking system that could classify 7 types of 

cars using YOLOv3 and YOLOv5. This study demonstrated 

that the trained YOLOv5l model remained stable and 
maintained high accuracy levels even under different image 

quality and noise conditions. YOLOv3, YOLOv4 and 

YOLOv5 were selected to develop a vehicle detection system 

and study the detection performance of each YOLO version 

[14], [15]. The author state that YOLOv5 take longest training 

time and show unpredictable results in non-uniform lighting 

and occluded objects. An experimental study has evaluated 

the performance of YOLOv5 and YOLOv7 in sandy weather 

environments [16]. The result showed that YOLOv7 have 

achieved 94% mAP on the augmented dataset.  

The study conducted by Terven et al. [17] provides a broad 
and systematic overview of different YOLO variant 

architectures and their evolution. As highlighted in a 

comprehensive review by Diwan et al. [18], this study 

compared two-stage detectors and one-stage detectors and the 

challenges in the field of computer vision. Small object 

detection has always been a difficult problem in computer 

vision, Gunawan et al. [19] proposed to use YOLOv3 and 

yolov5 to detect images taken by drones to verify the 

performance of the yolo series for small object detection. 

Gillani et al. [20] use YOLOv5, YOLO-X, YOLO-R and 

YOLOv7 to do the model performance comparison and 

architectures evaluation. The findings show that while 
YOLOv7 performs well in terms of accuracy compared to 

other YOLO variants, it lags behind in terms of FPS rate. In 

comparison, YOLOv5 provides a good balance with moderate 

accuracy and the highest FPS rate, which makes it a better 

choice for real-time detection. Besides, data augmentation 

was found to be a cost-effective way to improve the accuracy 

and performance of YOLO. [21], [22], [23] have indicate that 

data augmentation can help YOLO to improve the accuracy 

and help the model to learn more about the target object. Data 

augmentation allows the model to learn more image features 

and improve the overall performance by increasing diversity 
and variability in the training data.  

This paper chooses YOLO, the most popular model 

architecture in object detection and computer vision, to 

develop the vehicle detection model for performance 

evaluation. The advantages of the YOLO are that it can 

directly train on full images compared with classifier-based 

approaches, and it pushes the state-of-the-art in real-time 

object detection [24]. For example, YOLO will make 

predictions based on the entire picture information, while 

other sliding window detection frameworks can only make 

inferences based on local picture information. YOLO is a 

single-stage object detector that can solve object detection as 

a simple regression problem and takes much less inference 

time than other algorithms. Since YOLO significantly 

outperforms other algorithms, this study investigates the 

accuracy of different versions of YOLO under different 
environments, lighting conditions and viewing perspective. 

Hence, the objective of this YOLO research work is to 

compare which version of YOLO has the highest accuracy in 

vehicle detection and develop a local vehicle classification 

system to realize the ITS in the future to ensure road safety in 

Malaysia. 

II. MATERIALS AND METHOD 

From related work, the previous researcher's detection of 

vehicle types was limited and only covered a few distinct 

categories which resulting in a lack of comprehensiveness. 

Furthermore, most of the current research on vehicle detection 

using YOLO focuses on a single version, and does not fully 

consider the impact of different YOLO versions on vehicle 

detection. Moreover, the local researcher conducted in 

Malaysia is more focused on speed estimation, traffic sign 

board recognition and number plate recognition while lacks 

of local vehicle detection system. Consequently, there is a 

need to generate a local vehicle detection system for Malaysia 

which have the capacity of detecting vehicles manufactured 
in Malaysia, adapting to the specific environmental factors in 

Malaysia and accommodating varying lighting conditions 

prevalent in Malaysia. The proposed solution aims to expand 

the range of detectable vehicle types on the road, analyses the 

effectiveness of different YOLO versions for vehicle 

detection, and take into account Malaysia's unique 

environmental and lighting conditions. 

A. Data Collection 

Data collection is important for ensuring the accuracy of 

training for a machine learning model because the model is 

only as good as the data it is trained on. Models can also be 

inaccurate if the data used to train it is incomplete, biased, or 

inaccurate. So, it is important to have a diverse and 

representative dataset of images that includes all the different 

types of vehicles that the model should be able to recognize 

such as vehicle in occluded or non-occluded images. Not only 

that, but it is also essential to gather photos of vehicles from 

various angles to provide the trained model with a wide field 

of view and the ability to recognize the vehicle from different 

perspectives shown as Fig. 1. This is because if the model is 
only trained on photos taken from a single direction, it will 

only be able to recognize objects from that angle. 

 
Fig. 1  Different Views from Different Vehicles 

46



The data for this study was sourced from videos of two 

highway segments provided by highway companies. To 

generate the dataset, this study used FFmpeg to extract frames 

every 30 seconds apart from 24 videos of highway segments. 

The video length for each video in the highway segment is 

approximately 50 minutes and the selected video 

encompasses various lighting conditions including morning, 

afternoon, and night to capture a comprehensive range of 

environmental scenarios. The original dataset collected 

consisted of approximately 2,416 samples before applying 
any data augmentation techniques. Nevertheless, the dataset 

size has increased to a total of 5,878 samples after 

implementing data augmentation techniques and adding 

online open sources data. However, there is a limitation where 

the videos are captured from a top-down perspective of the 

road so that the dataset will only show a single view, as shown 

as Fig. 2. In this case, data augmentation techniques were 

employed to diversify the dataset and overcome the limitation 

of a single perspective. Next, a data partitioning method called 

a train-test split is used to separate the dataset in this project 

before training the models. In this project, the proportion of 
the training data set is 60%, the test data set is 25% and the 

validation data set is 15%. This dataset also includes 8% of 

background images that with no object labels to reduce false 

positives. 

 
Fig. 2  Example Image of the Datasets 

The decision to use a Malaysia local vehicle dataset for 

training was based on the unique environmental factors of 

Malaysia compared to other countries and the different culture 

and concept of car ownership. For example, the midday 

sunlight of Malaysia is much stronger than in other countries 
which can cause high exposure issues since Malaysia is an 

equatorial country. Additionally, Malaysia has locally 

produced vehicles brand which are relatively rare in other 

countries and the culture of car ownership in Malaysia is 

small-sized vehicles are more prevalent compared to larger 

vehicles. However, it is more common to own larger vehicles 

such as SUV or pickups in foreign countries because of better 

protection and better cargo capacity due to differences caused 

by cultural differences. According to a survey conducted by 

Eichelberger et al. [25], another reason of larger vehicle more 

popular in other country is because the majority of the parents 

believe that larger vehicle like SUV or pickup have better 
collision protection performance for their safety and prioritize 

as a suitable choice for their or their children’s vehicles in the 

UK. From the two pictures of Malaysia and foreign vehicles 

obtained from the Internet, it can be clearly seen that the 

proportion of large vehicles will be more than Malaysia and 

Malaysians more prefer small vehicles as shown as Fig. 3. By 

focusing on local conditions, the detection system can better 

address the particular problems posed by the environment and 

reliably classify smaller vehicles that are more commonly 

seen in Malaysia. Therefore, the presence of locally produced 

car brands in Malaysia further justifies the use of local 

datasets for training. These locally produced vehicles may 

have unique design features and characteristics that differ 

from foreign vehicles and it is important that detection 

systems can accurately identify and classify them. 

 

 
Fig. 3  Example of Foreign and Malaysia Vehicle Types 

B. Data Labelling 

After collecting many images related to the vehicles traffic, 

labelling images is crucial in object detection for identifying 

the specific areas within an image that contain the desired 

object (known as the region of interest or ROI). It is typically 

designated by four coordinates shown as Fig. 4: the x and y 
represent as the coordinate of the starting point of the ROI, 

the width of the object of interest and the height of the object 

of interest. Annotation of images was performed using a free 

annotation tool called Labeling which allows image 

annotation and saving in YOLO format. In this study, a total 

of 6 different vehicle types were labeled according to their 

characteristics as follows: C1 for small cars, C2 for large cars, 

C3 for vans and trucks, C4 for large trucks, c5 for buses and 

C6 for motorcycles. For more details to the vehicle category, 

C1 vehicles are primarily small-sized passenger cars that 

suitable for urban commuting or personal use. C2 is the 

abbreviation of pickup truck or SUV type vehicle which is a 
civilian vehicle with an open rear cargo compartment and 

usually used to transport personal items. Besides, C4 are 

heavy-duty vehicles with more than four wheels and often 

employed to deliver huge cargo across long distances. 

 
Fig. 4  ROI of an Interest Object 

There are some important considerations when labeling 

ROI of objects in images. If an occluded object is more than 

50% visible and can be easily identified by a human, it can be 

marked as fully visible even if it is occluded by another object. 

Otherwise, the object should not be labeled as it is not possible 

to recognize the category due to occlusion by another object. 

On the other hand, objects that are partially out of the frame 

and still can recognize to one of the vehicle classes should 
typically be labeled as fully visible. Additionally, it is 

generally recommended to include a small margin of non-

object pixels around the object being labeled to avoid cutting 

off any part of the object with a rectangle label. 
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C. Data Imbalance 

Since the dataset collection focused on highway 

environment, there are some limitations within the dataset 

including low number of occurrences of certain vehicle types, 
especially bus and motorcycle. There are many different 

methods that have been invented to solve the problem of data 

imbalance and improve the accuracy of machine learning 

models. In this project, data augmentation and adding online 

open-source data for certain categories are the main methods 

to solve the data imbalance. These added open-source 

datasets, which focus on buses and motorcycles, were 

obtained from Roboflow and Google. 

Data augmentation is a strategy aimed at making the entire 

database more robust and applied to solve the problem of 

small datasets. It can improve the depth and quantity of the 
total images in the dataset by applying techniques such as flip, 

mix-up and color jitter to the dataset. This helps alleviate the 

problem of data type monotony by generating more diverse 

image views from original images, as more diverse datasets 

with different viewing angles and different environment 

condition can improve the overall detection accuracy of the 

model. Wong et al. [26] show that data augmentation can 

significantly improve performance and reduce overfitting 

when the data is known and correct. 

Mix-up is a data augmentation technique that uses 

weighted averages to generate new datasets by combining two 

existing examples. This study extracted images containing 
four types of lesser vehicle annotations (bus, truck, large 

truck, and motorcycle) for mix-up augmentation. Besides, 

horizontal flip augmentation was used to diversify the dataset 

by introducing another angle of the vehicle. Color jitter data 

augmentation was used to change the brightness of an image 

to simulate nighttime or exposure environment to enhance the 

robustness of the model. In this case, data augmentation 

allows to address the imbalanced data by creating more 

diverse views of images of fewer vehicle types as shown in 

Fig. 5. 

 
Fig. 5  Explanation of Data Augmentation 

D. YOLO Variants 

Joseph Redmon and his team first released YOLO in 2016 
[24]. The release of the first version of YOLO has aroused 

great interest and research in the object detection community 

because it significantly reduced computing time and achieved 

high real-time performance and accuracy. It served as the 

foundation for subsequent versions of YOLO and spurred the 

creation of additional cutting-edge object identification 

frameworks. This study selected YOLOv5, YOLOv6, 

YOLOv7, and YOLOv8, relatively mature and modern 

versions of YOLO variants, to compare and experiment.  

YOLOv5 [27] was the first version created in the PyTorch 

framework, which simplified configuration and improved the 

performance compared to earlier versions developed using the 

Darknet research framework.  YOLOv5 architecture consists 
of three components: Neck, Backbone, and Head. First, the 

backbone of YOLOv5 utilizes the cross-stage partial 

networks (CSP) to extract essential features from the input 

images but increases training time. Next, the feature pyramid 

model PANet is used as the Neck component to improve the 

detection performance of objects of different scales. Lastly, 

the head performs final detection to generate output vectors 

for each predicted object in the input image using bounding 

boxes, object scores, and class probabilities. 

YOLOv6 [28] extensively upgrades YOLOv5 regarding 

the accuracy, training time, and inference performance. A re-
parameterizable and more efficient backbone network, 

EfficientRep Backbone and Rep-PAN Neck are designed 

based on the RepVGG style to replace the CSP network in 

YOLOv5. The author optimizes the design of a more concise 

and compelling Efficient Decoupled Head, which further 

reduces the additional delay caused by the general decoupled 

head while maintaining accuracy. The author adopts the 

Anchor-free paradigm in the training strategy, supplemented 

by the SimOTA label allocation strategy and the SIoU 

bounding box regression loss to improve detection accuracy. 

Besides, quantization-aware training (QTA) and post-training 
quantization (PTQ) are applied into YOLOv6 to improve 

inference speed without significantly reducing network 

performance. In summary, YOLOv6 reduces hardware 

latency, significantly improves algorithm accuracy, and 

makes detection networks faster. 

YOLOv7 [29] is a widely used model in computer versions 

and machine learning due to its high detection capability. 

YOLOv7 integrated several techniques to improve the 

performance and efficiency of trained models. Extended 

Efficient Layer Aggregation Network (E-ELAN) replaced the 

original Backbone to control the gradient path to improve the 

learning and convergence. YOLOv7 combines various bag-
of-freebies techniques to enhance the model performance 

further. These techniques include using reparametrized 

convolutions (RepConv) without identity connections (called 

RepConvN), coarse label assignment for the auxiliary head, 

and acceptable label assignment for the bootstrap head. These 

improvements ensure that YOLOv7 can perform real-time 

detection while maintaining high frames per second (FPS).  

The same author of YOLOv5 has released YOLOv8 from 

the Ultralytics team [30]. YOLOv8 is an anchor-free detection 

model with a decoupled head that can independently handle 

abjectness, classification, and regression tasks. This 
dramatically reduces the number of frame predictions and 

speeds up the processing of Non-Max Suppression. YOLOv8 

uses a modified backbone CSPDarknet53 feature extractor 

like YOLOv5, where the original C3 block is changed to a 

newly created cross-stage partial bottleneck with two 

convolutional (C2f) blocks. In the new C2f block, all the 
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outputs of the Bottleneck are connected, while the C3 block 

uses only the last production of the Bottleneck. In the neck, 

feature concatenation occurs without enforcing the same 

channel size, which reduces parameters and overall tensor 

size. The author also packs the latest YOLOv8 into a python 

package to reduce the trouble of creating and installing a 

python environment suitable for running YOLO. 

Nevertheless, YOLOv8 not only provides object detection, 

but also offers object segmentation, classification and pose 

estimation capabilities. 

III. RESULT AND DISCUSSION 

A. Experiment Setup 

This project primarily utilizes Python as the programming 

language because it is relatively easy to use and has a robust 

development environment, making it an excellent choice for 

machine learning tasks. Next, the YOLO framework plays a 

crucial role in this project for identifying and categorizing 

various types of vehicles. Therefore, this project uses a git 
clone to obtain multiple versions of the YOLO release in 

GitHub, such as YOLOv5, YOLOv6, YOLOv7, and 

YOLOv8. Furthermore, Anaconda's virtual environment 

feature is utilized in this project to create separate 

environments with specific runtime conditions and 

dependencies required by different versions of YOLO. Since 

the platform used in this experiment is RTX 3090, CUDA 

11.7 is installed to drive it to maximize performance and solve 

the problem of time-consuming CPU training.  

Hyperparameter tuning can be recognized as a significant 

tool for deep learning to determine the optimal configuration 

of hyperparameters to improve the performance of neural 
network models. Additionally, hyperparameters, including 

learning rate, batch size, number of layers, activation 

functions, and regularization techniques, can be considered 

predefined parameter settings used to influence the behavior 

and architecture of a neural network. Different 

hyperparameter tuning techniques were relentlessly 

experimented with to experiment with different YOLO 

variants to optimize the model's performance. For all model 

training, batch sizes of 24 and 400 epochs were set for optimal 

resource utilization and reduced the training time. These 

parameter settings provide enough iterations for the model to 
learn complex patterns and converge to an optimal solution.  

B. Evaluation Metrics 

Mean Average Precision (mAP) is a widely recognized 

metric for evaluating the performance and accuracy of object 

detection models. This evaluation index will be the standard 

for judging the model's performance throughout this study. 

The mAp metric is calculated by computing the mean of 

average precision (AP) for each object category based on the 

specific threshold called IoU. IoU is a measure of overlap 
between predicted and ground-truth bounding boxes, which is 

used to observe the actual label and trained model label.  
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Here, the area of overlap and area of the union in equation 

(1) respectively represent the intersection and combined 

region between ground truth bounding boxes and predicted 

bounding boxes. Each class of true positive (TP), false 

positive (FP), and false negative (FN) could be calculated 

based on the IoU and the confidence score of predicted 

bounding boxes. These 3 metrics can then be used to calculate 

the precision and recall of the model by following equations 

(2) and equations (3): 
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AP measures the precision-recall balance of a model at 

different IoU thresholds to obtain an overall measure of the 

model's overall accuracy and robustness. AP can be calculated 

by summing the recall values at 11 equidistant levels [0, 

0.1, ..., 0.9, 1.0] from the recall curve by equation (4):    
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*
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Then, mAP is calculated by dividing the AP values of each 
class by the total number of classes. Generally, higher mAP 

values indicate better accuracy and robustness of the model. 

The mAP metric is typically measured using mAP@0.5, 

which evaluates performance at an IoU threshold of 0.5, and 

mAP@0.5:0.95, which represents the average mAP over 

various IoU thresholds from 0.5 to 0.95. 

C. Model Benchmark 

In model benchmarking, the training phase follows the 

dataset allocation method and parameter settings described in 
the section above. Training iterations for different YOLO 

versions were conducted, and the results are recorded in 

Tables I and II. These tables show the training results before 

and after using data augmentation techniques, including the 

training loss, accuracy, and training time. These recorded 

results are a comprehensive reference for evaluating training 

progress and monitoring model performance. These tables 

help to compare the performance of different YOLO versions 

and assess the impact of data augmentation on training results. 

Table III records the pre-trained checkpoints used in this 

paper and the models' frames per second (FPS). 

TABLE I 

MODEL PERFORMANCE BEFORE APPLYING DATA AUGMENTATION 

TECHNIQUES 

Model Precision Recall 
mAP

@0.5 

mAP@0

.5:0.9 

Training 

time 

(hours) 

YOLOv5 0.756 0.803 0.818 0.649 2.839 

YOLOv6 0.718 0.71 0.746 0.57 3.214 

YOLOv7 0.809 0.765 0.811 0.651 3.722 

YOLOv8 0.824 0.725 0.818 0.666 2.437 

TABLE II 

MODEL PERFORMANCE AFTER APPLYING DATA AUGMENTATION TECHNIQUES 

Model Precision Recall 
mAP

@0.5 

mAP@0

.5:0.9 

Training 

time 

(hours) 

YOLOv5 0.968 0.952 0.977 0.91 11.44 

YOLOv6 0.945 0.9 0.967 0.836 7.847 

YOLOv7 0.941 0.927 0.961 0.859 9.866 

YOLOv8 0.964 0.947 0.979 0.928 11.93 

TABLE III 

MODEL PRETRAIN CHECKPOINTS AND FPS 

Model Parameters 

(m) 

FLOPS (b) Weights 

(MB) 

FPS 

YOLOv5x 86.2 203.9 173.1 62.89 
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Model Parameters 

(m) 

FLOPS (b) Weights 

(MB) 

FPS 

YOLOv6l 59.54 150.51 119.7 37.6 

YOLOv7x 70.81 188.1 142.1 62.5 

YOLOv8x 68.13 257.4 136.7 56.49 

 

According to observations in Table I, all models can only 

achieve about 80% of mAP@0.5 before applying data 

augmentation. This means that the models can most 

accurately identify objects in images, but they struggle to 

achieve higher performance and falsely detect objects. Even 

so, the loss curve of the training process also shows that most 

models show signs of overfitting. This happens when the 
models perform well on the training data but poorly on the 

validation data. Interestingly, both YOLOv8 and YOLOv5 

exhibit early stopping, suggesting that the training dataset 

may not have sufficiently diverse examples to improve the 

model's performance further. Hence, data augmentation 

techniques have been used in this study to solve the data 

imbalance, increase the dataset size, and overcome 

overfitting. From the observation of Table II, YOLOv5 

achieves the highest precision and recall among the models, 

which are 96.8% and 95.2%, respectively, after applying data 

augmentation. These two-evaluation metrics show that 

YOLOv5 can detect and classify objects accurately with 
relatively few false positives and false negatives. In addition, 

YOLOv8 also shows its strong detection capabilities and good 

performance, with a precision rate of 96.4% and a recall rate 

of 94.7%. In this case, YOLOv6 and YOLOv7 will perform 

slightly worse than YOLOv5 and YOLOv8. Regarding mAP 

evaluation indicators, YOLOv8 achieved the highest 

mAP@0.5 and mAP@0.5:0.9 values reaching 97.9% and 

92.8%, respectively. This obtained result demonstrates 

YOLOv8 superior performance in object detection over a wide 

range of confidence thresholds. YOLOv5 also performs well in 

terms of mAP with values of 97.7% at 0.5 IoU and 91% from 
0.5 to 0.9 IoU. The YOLO variants vary in model weight size, 

with YOLOv5 having the largest size (173.1 MB), followed by 

YOLOv7 (142.1 MB), YOLOv8 (136.7 MB), and YOLOv6 

(119.7 MB). Model weight size is an important consideration 

when deploying models in resource-constrained environments. 

However, a balance must be struck between reducing the model 

size and maintaining satisfactory performance.  

YOLOv8 required the longest training time of 11.929 hours 

with the highest FLOPs (257.4 billion), followed by YOLOv7 

with 9.866 hours of training time. YOLOv5 has a training 

time of 11.439 hours and the second-highest FLOPs (203.9 

billion). YOLOv6 has the shortest training time of 7.847 hours 
and the lowest FLOPs (150.51 billion). The number of 

parameters has a similar trend, with YOLOv8 having the 

highest number (68.13 million), followed by YOLOv5 (86.21 

million), YOLOv7 (70.81 million), and YOLOv6 (59.54 

million). The inference test results for each trained model 

show that YOLOv5 had the highest Frames Per Second (FPS) 

with a high rate of 62.89, and YOLOv7 did pretty well with a 

high FPS of 62.5. This means that YOLOv5 and YOLOv7 are 

capable of processing images in the YOLO family. YOLOv8 

had a slightly lower FPS of 56.49, while YOLOv6 had the 

lowest FPS of 37.6, which means it is not good at quickly 
processing images. The FPS calculation of this part is based 

on the recommendation of the author of YOLOv5, which is 

1000/inference times. 

In summary, the experimental results show different 

performance characteristics of different YOLO variants. 

Despite higher computational requirements and longer 

training time, YOLOv8 demonstrates its strong detection 

capabilities and achieves the highest mAP values among other 

models. Before the release of YOLOv8, YOLOv5 

demonstrated its leadership in object detection with its high 

precision, recall, and mAP scores. It is worth noting that the 

tradeoff between model complexity, training time, and 

performance should be carefully considered when choosing a 
YOLO variant. YOLOv6 offers a viable option for faster 

training times and lower computational requirements, albeit 

with slightly lower performance than YOLOv5 and YOLOv8. 

However, the final choice of the YOLO variant should depend 

on the project's specific requirements, including the ideal 

balance between accuracy, training time, model size, and 

available computing resources. 

Besides that, this study also observed and compared the 

curves on the train and loss graphs to investigate the impact 

of data augmentation on YOLO. This observation mainly 

focuses on the presence of overfitting and the subsequent 
performance improvement on the validation loss graph. 

Before applying data augmentation techniques, overfitting 

was observed in the validation phase among all YOLO 

versions; the accuracy also fluctuated up and down, and it 

didn't maintain a perfect continuous upward trend. These 

fluctuations in these metrics indicate inconsistencies in model 

predictions, exhibiting varying degrees of accuracy and 

completeness in detecting objects. These changes are 

particularly evident in obj_loss (confidence in object 

existence) and cls_loss (classification loss) across all YOLO 

variants. The training and validation curves for these different 
versions before applying data augmentation techniques are 

placed in Fig. 6-9. Since YOLOv6 does not provide training 

loss and validation loss during training, only mAP@0.5 and 

mAP@0.5:0.9 are displayed in the figure.  

 

 

Fig. 6 Training and Loss Curves for YOLOv5 Before Applying Data 

Augmentation Techniques 

 
Fig. 7 Training and Loss Curves for YOLOv6 Before Applying Data 

Augmentation Techniques 
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Fig. 8 Training and Loss Curves for YOLOv7 Before Applying Data 

Augmentation Techniques 

 
Fig. 9 Training and Loss Curves for YOLOv8 Before Applying Data 

Augmentation Techniques 

In addition, the confusion matrix for different YOLO 

variants also reflects the percentage of misclassified classes. 

As can be seen from the confusion matrix of different YOLO 

variants in the figure below, the observation showed that only 
one or two categories have a high accuracy, and the other 

categories are kept below 80% before applying data 

augmentation techniques. Classes from C1 to C4 have the 

most misclassifications among the other classes, while C5 and 

C6 have the least misclassifications. The low error rate despite 

the small dataset may be due to the distinct and unique 

characteristics of the bus category represented by class C5 and 

the motorcycle category represented by class C6 compared 

with other classes. This makes it easier for the model to 

differentiate between these two classes even with a small and 

biased dataset. This study also performed validation and 
testing on the unseen dataset to ensure the model's 

generalization ability. The result showed that both C5 and C6 

performed well. The common vehicles represented by C1 and 

C2 have some extremely similar shapes under the influence of 

the angle, so this may be a problem that makes the model 

difficult to distinguish. The worst model performance on 

object detection is YOLOv6 before applying data 

augmentation.  
After applying data augmentation to the datasets, 

overfitting was significantly mitigated, and both training and 

validation loss consistently decreased, as shown in Fig. 10-13. 

The overfitting reduction and performance improvement 
observed on the resulting graph can be attributed to the 

introduction of data augmentation techniques. The trained 

model was exposed to a more diverse range of variations in 

the data by implementing horizontal flip, color jitter, and mix-

up. This augmented dataset enables the model to learn more 

powerful and general object detection features, which results 

in decreasing validation loss. The trained model also tests and 

validates unseen data to ensure the model's performance. The 

result showed that the model performance after applying data 

augmentation has outperformed the trained model before 

applying data augmentation techniques. Nonetheless, the 

observation from the confusion matrix after applying the data 

augmentation techniques reflects a significant improvement 

with all YOLO variants achieving 86% and above on object 

detections. The misclassification of all YOLO variants has 

been decreased and the best result on object detection after 

applying data augmentation as shown in the confusion matrix 

in Fig. 14-17. In conclusion, this observation highlights the 

effectiveness of data augmentation in mitigating overfitting, 

improving the performance, and reducing the misclassified in 

the YOLO model. The reduction in validation loss 
demonstrates that the model improves generalization through 

augmentation techniques.  

 

 

Fig. 10 Training and Loss Curves for YOLOv5 After Applying Data 

Augmentation Techniques 

 

Fig. 11 Training and Loss Curves for YOLOv6 After Applying Data 

Augmentation Techniques 

 

Fig. 12 Training and Loss Curves for YOLOv7 After Applying Data 

Augmentation Techniques 

 

Fig. 13 Training and Loss Curves for YOLOv8 After Applying Data 

Augmentation Techniques 
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Fig. 14 Confusion Matrix for YOLOv5 

 

Fig. 15 Confusion Matrix for YOLOv6 

 

Fig. 16 Confusion Matrix for YOLOv7 

 

Fig. 17 Confusion Matrix for YOLOv8 
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Fig. 18-21 below depicts the detection results of different 

versions of the YOLO model in terms of vehicle detection. 

After analyzing the results, the trained model can accurately 

identify and detect vehicles on the road. Moreover, there is a 

higher misclassification when detecting vehicle classes C1 

and C2 while other vehicle types still perform satisfactorily. 

However, the model tends to perform at a higher 

misclassification rate when the vehicle is far away, especially 

in the latter half of the image. This limitation suggests that the 

model's ability to distinguish vehicle classes weakens when 
objects are far away. Still, it has proven effective in close-

range scenarios, accurately identifying various vehicle types. 

Overall, the performance of these YOLO models for vehicle 

detection has both strengths and limitations. These 

observations emphasize the importance of considering the 

model's limitations and further optimizing it to improve its 

performance across all distances and vehicle classes. 

 

 
Fig. 18  YOLOv5 Detection Results 

 
Fig. 19  YOLOv6 Detection Results 

 
Fig. 20  YOLOv7 Detection Results 

 
Fig. 21  YOLOv8 Detection Results 

IV. CONCLUSION 

This project mainly focuses on evaluating the performance 

of different variants of YOLO for vehicle detection. The 

proposed method addresses the challenges of data imbalance 

and data labeling. This project successfully addressed the data 

imbalance by employing data augmentation techniques and 
incorporating additional open-source data to fill in the 

imbalance categories. The experimental result has 

demonstrated that proper data augmentation can significantly 

improve the model's accuracy and enhance the depth of 

datasets. The hyperparameter tuning technique used also 

optimizes and improves the performance of the model to a 

large extent. 

Undeniably, the performance might be improved when the 

larger datasets are combined with large models. However, 

considering the higher computational demands associated 

with such methods, it is necessary to investigate. Researchers 
can choose YOLO variants according to their specific 

experimental needs or industry application. YOLOv6 is an 

appropriate choice for those expecting to generate reasonably 

accurate models within limited resources and time constraints. 

In contrast, YOLOv5 and YOLOv8 are more suitable for 

scenarios that do not have limitations on computational 

resources and time constraints. These two models will 

perform better or result in accuracy, precision, and robustness. 

As a beneficial suggestion, YOLOv5, YOLOv7, or YOLOv8 

are recommendable for the usage of real-time object 

detection. YOLOv8 performed well in object detection and 

surpassed other tested models with an accuracy of 97.9% 
mAP@0.5 and 92.8% mAP@0.5:0.9, but it required a 

relatively longer training time compared to other models.  

Although this research has made encouraging results in 

vehicle detection, some problems remain to be solved, 

especially in accurately identifying fuzzy and tiny objects. 

The dataset used in this study primarily consists of top-down 

and far-angle views, which might contribute to the difficulty 

in identifying the vehicle types when the vehicles approach 

from a distance or appear small in the image. In the future, it 

would be beneficial to expand the dataset by incorporating 

more diverse data that includes occluded objects, varying 
angles, and different lighting conditions. This would enable 

the model to improve its accuracy and robustness in real-

world scenarios. For example, local environmental factors 

such as rain or smog can be added to the dataset in the future 

to enhance the ability of the trained model to recognize 

objects in challenging scenes.  

Furthermore, finding efficient strategies to handle the 

escalating computational demands becomes more crucial as 

datasets and models continue to grow and be complex. 

Exploring techniques such as distributed training or model 

compression would be valuable in optimizing the training 
process and reducing computational resources without 

sacrificing performance. Additionally, it would be helpful to 

explore transfer learning and domain adaptation techniques 

for creating more versatile and adaptable models. In this case, 

the performance of object detection systems can be enhanced 

in scenarios where the labeled data is limited, or the target 

domain differs from the training data by leveraging 

knowledge from related domains or pre-trained models. 

Lastly, exploring real-time optimization and deployment of 

object detection models on resource-constrained devices or in 
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edge computing scenarios is another important avenue for 

future research. This would enable the deployment of efficient 

and accurate models in various applications, including 

autonomous vehicles, robotics, and surveillance systems. 
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