
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Processing Plant Diseases Using Transformer Model
Hong-Zheng Marcus Lye a, Kok-Why Ng a,*

a Faculty of Computing and Informatics, Multimedia University, Selangor, 63100, Malaysia

Corresponding author: *kwng@mmu.edu.my

Abstract—Agriculture faces challenges in achieving high-yield production while minimizing the use of chemicals. The excessive use of

chemicals in agriculture poses many problems. Accurate disease diagnosis is crucial for effective plant disease detection and treatment.

Automatic identification of plant diseases using computer vision techniques offers new and efficient approaches compared to traditional

methods. Transformers, a type of deep learning model, have shown great promise in computer vision, but as the technology is still new,

many vision transformer models struggle to identify diseases by examining the entire leaf. This paper aims to utilize the vision

transformer model in analyzing and identifying common diseases that hinder the growth and development of plants through the plant

leave images. Besides, it aims to improve the model's stability by focusing more on the entire leaf than individual parts and generalizing

better results on leaves not in the image center. Added features such as Shift Patch Tokenization, Locality Self Attention, and Positional

Encoding help focus on the whole leaf. The final test accuracy obtained is 89.58%, with relatively slight variances in precision, accuracy,

and F1 score across classes, as well as satisfactory model robustness towards changes in leaf orientation and position within the image.

The model's effectiveness shows the vision transformer's potential for automated plant disease diagnosis, which can help farmers take

timely measures to prevent losses and ensure food security.

Keywords—Vision transformer; deep learning; plant disease; computer vision.

Manuscript received 7 Dec. 2022; revised 12 Jul. 2023; accepted 25 Sep. 2023. Date of publication 31 Dec. 2023.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Modern agriculture faces challenges like excessive
chemicals to be used for high yield and pest control, which
necessitates prompt and accurate disease diagnosis [1], [2].
Due to the industry's growth, traditional methods of
diagnosing diseases based on farming expertise or
professional advice are no longer sufficient. A novel approach
involves automatic plant disease identification using machine
vision techniques, where disease symptoms like changes in
leaf shape, color, and texture provide crucial data [3], [4].
Differences in these characteristics within images can help
classify and determine the disease afflicting the plant.
Recently, transformer models in deep learning have shown
remarkable results, surpassing convolutional neural networks
(CNN) in many complex tasks, including computer vision.
[5], [6]. They are more accurate, finely tuned, robust, and
better at handling imperfections [7]. This paper uses the
transformer model to analyze plant diseases, identifying
common diseases that stress plants via leaf images [8].

Studies by [9], [10] and [11] employed visual transformers
(ViT) to weed and crop classification using Unmanned Aerial

Vehicles (UAV) images. Their application used the self-
attention mechanism on the transformer model. It showed
promising performance, particularly in situations with fewer
training samples. The Swin Transformer by [12]
demonstrated reduced computational complexity and
increased accuracy but required large-scale datasets. Hybrid
models, combining CNNs with ViTs, proposed by [6] and
[13], improved the model speed and reduced the complexity
while maintaining the model's accuracy.

Convolutional Neural Networks (CNN) models are the
most widely used due to their suitability for real-time
detection, albeit with lower accuracy than other models.
Innovative CNN studies like [14] and [15] proposed different
techniques to improve the performance of CNNs, including
optimizing parameter count and computational efficiency and
incorporating other methodologies like transformers. Another
study by [16] focused on individual lesion examination for
leaf disease identification, boosting accuracy but potentially
losing some contextual information from the original images.
Meanwhile, [17] and [18] used CNN to address false positives
and class imbalances in tomato disease identification.

You Only Look Once (YOLOv4) algorithm proposed by
[19] and the multi-granularity feature extraction model based

2550

JOIV : Int. J. Inform. Visualization, 7(4) - December 2023 2550-2557

on ViT by [20] represent unique approaches that do not fit
neatly into the previous categories, offering innovations in
feature learning ability, detection procedure accuracy, and
disease classification accuracy [21], [22]. In summary,
ongoing research in plant disease identification using
computer vision is dynamic, with different methodologies
having their unique strengths and weaknesses, often
influenced by the trade-offs between accuracy, complexity,
and speed.

II. MATERIAL AND METHOD

A. Data Preprocessing
Before training begins, the Keras Sequential model is used

to preprocess and augment the training dataset. The purpose
of this is to increase the diversity and size of the training
dataset as well as to standardize the input data for the model.
The Normalization layer scales input values to the range [-1,
1], with a mean of 0 and a standard deviation of 1. This is
achieved by subtracting the mean and dividing by the standard
deviation of the dataset. The train dataset's mean and standard
deviation are calculated using Keras's adapt () function.
Normalization helps the model converge faster during
training and prevents training optimization from getting stuck
due to uneven distribution.

The Resizing layer scales the images to have a fixed
size.[23]. This is done because deep learning models like
Vision Transformers require input size to be consistent. [24],
[25]. The size chosen is typically based on what works best
for the model architecture, computational efficiency, and the
task at hand. Here, the resized image size was set to 72x72 for
quicker computation.

The following three layers introduce slight edits to the
input images into the training dataset. This helps to increase
the diversity of the data and reduces the model's dependency
on the orientation of the objects in the images, making the
model more robust to orientation changes in unseen data. The
RandomFlip layer randomly flips the input images
horizontally, the RandomRotation layer applies a small
random rotation to the input images, whereas the
RandomZoom layer applies a small zooming-in or zooming-
out effect to the input images.

B. Model Construction and Evaluation
The PlantVillage dataset was chosen from Kaggle to

demonstrate the implementation of the proposed method. The
PlantVillage dataset consisted of Tomato leaf images (16018
images), Potato leaf images (2152 images), and Pepper leaf
images (2475 images). The Tomato dataset was chosen for
having the most images, though the number of images was
reduced to 12239 for a faster training time. In Figure 1, data
preprocessing was performed before training began. The
training dataset was standardized via normalization and
resizing. Then, it was augmented by randomly flipping,
rotating, and zooming in or out on the images to promote
dataset diversity and to increase model robustness to changes
in leaf orientation.

Fig. 1 Flowchart of Vision Transformer Model

Firstly, a set of labeled leaf images is received from the

Tomato dataset and then prepared by preprocessing the
images to make them more accessible for the model, such as
resizing the images to a smaller resolution. After configuring
the model's hyperparameters, Shift Patch Tokenization will be
implemented (this process will be further explained later), and
then the patches will be visualized to ensure the process was
implemented successfully.

When it is completed, the patch encoding layer is employed
to add positional information to the patches, while the locality
self-attention module (the process would be explained later)
is applied to add attention weights to local maximums, which
helps the model learn the inter-token relations within the
patches. Next, the Multi-Layer Perceptron (MLP) neural
network, which is the basis for the model's machine learning
process, is applied [26]. Finally, all the components are
combined to form the Vision Transformer model. After
compiling the code, it proceeds to train the model and
evaluate its performance for its accuracy and loss across the
training process. The results of the model are shown then.

In Figure 2, the Shift Patch Tokenization starts with an
image already preprocessed to fit the model’s image size
requirements. Firstly, the image is shifted in the four diagonal
directions as well as the four orthogonal directions (top left,
top right, bottom left, bottom right, left, right, top, bottom),
leaving empty space where the image was shifted from, before
concatenating the four shifted images with the original image
into arrays. Then, small image patches are extracted from the
array of concatenated images before the spatial dimensions of
the extracted patches are flattened into one-dimensional
arrays for easier processing during model training, producing
the tokens of the image. Finally, layer normalization is

2551

performed on the tokens to translate the range of the token
values to a range between 0 and 1. This aims to help the model
reach convergence faster during training and help the model
generalize better on unseen images. The tokens are then
visualized to ensure the process was performed without issue.

Fig. 2 Flowchart of Shift Patch Tokenization

In Figure 3, the Locality Self Attention (LSA) module is a

modified version of the regular self-attention module that is
typically used in transformers. First, the module obtains the
queries, keys, and values from the input tokens, which are the
tokens of the patches that were extracted earlier during the
patch encoding process. To explain what queries, keys, and
values are: in general, for attention modules, a query
represents the token of data currently being focused on during
the calculation process, while keys represent all the tokens of
data, and values represent the information held within the
tokens of data.

In Figure 4, each query is multiplied by each key to obtain
an attention score consisting of an array of values representing
relationships between tokens (a.k.a. inter-token relations).
Multiplication is performed via dot product, which is the
multiplication of two vector matrices to obtain a final product
of a single number. Then, the attention score is scaled by
hyperparameters known as temperature for controlling the
randomness of the predictions and for sharper differences in
attention score values, which helps in finding inter-token
relations. The temperature can be adjusted by
backpropagation during the learning process. However, when
using self-attention, the query, key, and value come from one
input source, which can cause the attention score to focus on
intra-token relations (relationships between the values within
the same token) rather than inter-token relations. To prevent
this from affecting the attention score, a mask that multiplies
zero on diagonal terms is used, thus removing them from
consideration in calculating the attention score, as a diagonal
term is created when a token is multiplied by itself.

Fig. 3 Flowchart of Locality Self Attention Module

2552

Fig. 4 Description for Query, Key and Value in Calculated in Attention Score

After that, a SoftMax function is applied as an activation

function to normalize the values within the attention score
into probabilities ranging from 0 to 1. This final attention
score is then multiplied with the input values via dot product
to obtain the output of the self-attention module, which is then
used to help the model learn the inter-token relations. The
PositionalEncoding class starts by receiving the model
dimensions (d_model) and the maximum sequence length
(maximum_position_encoding) as input, as stated in Figure 5.

Fig. 5 Flowchart of Positional Encoding Module

It initializes a matrix of shape (1,
maximum_position_encoding, d_model) with zeros, which
will store the positional encoding information. The class
calculates the angle (i / 10000^(2*d/d_model)) for each
position (i) in the sequence and each dimension (d) in the model
and stores these angles in a matrix called angle_rads. The sine
function is applied to the even indices (2i) of angle_rads, and
the cosine function is applied to the odd indices (2i+1) of
angle_rads. The resulting matrix contains the positional
encoding values, which are then assigned to the positional
encoding matrix initialized earlier. This matrix is now the
pos_encoding attribute of the PositionalEncoding class.

When the PositionalEncoding layer is called, it takes the
input tokens as input and adds the positional encoding matrix
(pos_encoding) element-wise to these input tokens. The
resulting tensor contains both the original input tokens and the
positional information, which is then returned as the output of
the PositionalEncoding layer.

C. Dataset Training
The dataset used for training the proposed model is the

PlantVillage dataset (sources from Kaggle). Initially, it
consisted of a total of 16012 images from the Tomato part of
the dataset, with ten classes in total. All the images within the
dataset have a size of 256x256 pixels. After deleting some
images from the dataset to cut down on training time, the
Tomato dataset was chosen, with 12239 images and ten
classes, with 9791 training images and 2448 testing images.

The dataset was first read in to initiate the training, and
some preprocessing was used to prepare the training images.
Only training data was preprocessed, whereas testing data
remained untouched because the preprocessing methods are
used to help the model learn better and more efficiently, thus
reaching convergence faster. Having the testing data undergo
the preprocessing is unnecessary as it would only slow down
the testing process. The images were read in an 64x64-pixel
RGB format, with a corresponding label to each image. The
images and their labels were then inserted into their respective
arrays.

Then, the image array and the label array were each split
into training and testing data: x_train and y_train being the
training images and their respective labels, as well as x_test
and y_test being the testing images and their respective labels
as stated in Figure 6. The images were saved in 4-dimensional
arrays, whereas the labels were saved in 1-dimensional arrays.

Fig. 6 x_train shape, y_train shape and x_test shape, y_test shape

2553

After that, the Shifted Patch Tokenization, Patch Encoder,
and Positional Encoding modules were constructed. The
Shifted Patch Tokenization module shifts the images by the
size of half a patch in each of the four directions: left-up, left-
down, right-up, and right-down. (The Shift Patch
Tokenization module does not create the patches but merely
gives information on the size of the patches.) It does this by
first cropping the images to the section opposing the intended
shift direction, then creating black padding for the images to
replace the cropped section, but towards the shift direction
instead of opposing it. It then adds the information from the
additional images to the original patches.

On the other hand, the Patch Encoder creates the patches
and then encodes the positional information to the patches
relative to each other. Then, it calculates the positional data
and adds it to the encoded patches, also known as the input
tokens. Positional Encoding also adds spatial information in
the form of sine and cosine angles to the input tokens created
by the Patch Encoder module.

Next, the transformer block was built. The Multi-Head
Attention with LSA, and MLP modules were first built
separately. Then, the modules were put together to create the
transformer. The transformer block consists of 8 layers, with
each layer being a preprocessing normalization layer, a Multi
Head Attention with LSA module to calculate attention
scores, a function to add the attention score to the encoded
patches, another preprocessing normalization layer, an MLP
module, then finally another function to add the classification
tokens from the MLP to the encoded patches [27].

Finally, the rest of the model was built, and all of the
components were compiled together for training. A
WarmUpCosine module and an Adam optimizer module were
created to help accelerate the learning process of the model.
The model was then compiled together, with the Shift Patch
Tokenization module being first, followed by the Patch
Encoder, and then finally the transformer block with the
WarmUpCosine and Adam optimizer modules incorporated
into the block. The model was then trained to fit the training
data, using 30 epochs to train the model, with a batch size of
256 images per batch and a 90:10 validation split, with the
10% split of the data used to validate the model after each
training epoch. Two callback functions are used: one to record
the time used for each epoch and another for early stopping to
prevent overfitting. This model was trained for 19 epochs
before the early stopping callback was activated to stop the
training process.

III. RESULT AND DISCUSSION
In Figure 7, the final training accuracy of the model was

95.03%, with the final validation accuracy being 74.77%. The
training accuracy quickly raised from 38.74% to 85.15%
within the first ten epochs before slowing down, whereas the
validation accuracy raised from 63.36% to 85.40% within
eight epochs before vacillating somewhat between 85% and
90% for the rest of the training.

Fig. 7 Model Accuracy

In Figure 8, the final training loss of the model was 0.2236,

with the final validation loss being 0.3500. The loss quickly
dropped from 2.8832 to 0.7212 within the first 5 epochs
before slowing down. On the other hand, the validation loss
only dropped from 1.1317 to 0.5264 at around 5 epochs, then
leveled off around 0.35 starting from the 10th epoch for the
remainder of the training.

Fig. 8 Model Loss

In Figure 9, the final top-5 training accuracy of the model

was 99.89%, with the final top-5 validation accuracy being
99.79%. The top-5 training accuracy rose from 81.09% to
98.47% within the first 5 epochs, then slowed down and
leveled off around 99.80% at the 10th epoch until the end of
the training. Meanwhile, the top-5 validation accuracy rose
from 96.63% to 99.18% within 5 epochs, then slowed down
and leveled off around 99.70% at the 8th epoch until the end
of the training.

After the training, a final test was done to evaluate the
model on unseen data, as stated in Figure 10. The testing
accuracy was 89.58%, which is fairly lower when compared
to the training accuracy but still within an acceptable range,
as it is close to the validation accuracy. Moreover, the testing
top-5 accuracy was 98.61%, which means that the model is
still reasonably accurate overall, with slight imperfections
sometimes causing the correct classification to fall somewhat
below the most likely class within the model.

2554

Fig. 9 Top-5-Accuracy

Fig. 10 Model Accuracy

A. Accuracy Comparison with Other Models in Prior

Research
Table 1 shows that the accuracy score of the proposed

vision transformer was significantly improved over the
traditional vision transformer, as well as various models in
prior research, such as the ones by [28] and [29].

TABLE I
ACCURACY COMPARISON BETWEEN DIFFERENT CLASSIFICATION MODELS

Study Classification Model Accuracy Score (%)

This study Traditional Vision
Transformer

81.86

This study Proposed Vision
Transformer

90.00

[12] Inception-V3 77.50
[13] Mobilenet 88.40
[12] Mobilenet 82.60

Even so, there was limited computing power, which

restricted the input size of the vision transformers during the
training process. As a result, the 64x64-pixel RGB input
format was chosen instead of the typical 128x128-pixel RGB
or 256x256-pixel RGB formats, which would have improved
the quality and accuracy of the model, as the model would be
able to consider a larger area of the image per token, and thus
can better describe the image in its trained weights.[30]
Despite that, the fact that the proposed vision transformer still
managed to obtain an accuracy of nearly 90% under these
harsh conditions shows that the proposed model has much
potential for improvement when given better computing
power and, thus, better-quality training.

B. Experiment Setting
There are a total of 10 classes within the dataset. The labels

of the classes are denoted with integers ranging from 0 to 9.
Listed in order of the integers, the classes are named as:
Tomato__Target_Spot, Tomato__Tomato_mosaic_virus,
Tomato__Tomato_YellowLeaf__Curl_Virus,
Tomato_Bacterial_spot, Tomato_Early_blight,
Tomato_healthy, Tomato_Late_blight, Tomato_Leaf_Mold,
Tomato_Septoria_leaf_spot,
Tomato_Spider_mites_Two_spotted_spider_mite.

Two test images from different dataset classes were
randomly selected for a small test run: one from the
Tomato__Tomato_YellowLeaf__Curl_Virus set and one

from the Tomato_healthy set. These images were labeled as
yellowleaf1 and healthy1, respectively. Copies of the two
images were then given a random rotation (labeled as
yellowleaf2, healthy2) and slightly cropped (labeled as
yellowleaf3, healthy3), respectively, giving a total of 6 test
images (Figure 11 referred). This was to test the algorithm's
robustness to the leaf's orientation and position within the
image.

yellowleaf1

yellowleaf2

yellowleaf3

healthy1

healthy2

healthy3

Fig. 11 The 5 test images, manually chosen at random

After loading the test images, the model was used to

attempt a classification of the images, and the output was
compared to the actual classes of the images. The model
correctly classified all the test images. Thus, this small-scale
experiment proves that this model can identify plant diseases
regardless of leaf position and orientation. A classification
report is used to analyze the test data results more finely. The
overall precision, recall, F1 score and support, and the
separate statistics for each test data class are illustrated in
Figure 12 below.

In precision, Tomato_healthy (class 5) has relatively low
precision (74%), meaning that this class has a lot of false
positives during classification, with Tomato__Target_Spot
(class 0), Tomato_Early_blight (class 4) and
Tomato_Spider_mites_Two_spotted_spider_mite (class 9)
having mediocre precision (81%, 82% and 85% respectively).
On the other hand,
Tomato__Tomato_YellowLeaf__Curl_Virus (class 2) has
particularly high precision (99%), with
Tomato_Bacterial_spot (class 3) and Tomato_Late_blight
(class 6) also having relatively high precision (both 96%).

As for the recall, Tomato__Target_Spot (class 0) has the
worst recall (72%), with Tomato_Early_blight (class 4) and
Tomato_Late_blight (class 6) having mediocre precision
(81% and 85%, respectively). Meanwhile, Tomato_healthy
(class 5) has the highest recall (100%), with the next highest
being Tomato_Leaf_Mold (class 7, at 97%).

The F1 score of the class represents its overall score,
combining the scores of precision and recall into a single
category. Thus, using this metric, the class with the overall
worst performance is Tomato__Target_Spot (class 0),
whereas the class with the overall best performance is
Tomato__Tomato_YellowLeaf__Curl_Virus (class 2). Other
notable classes are Tomato_healthy (class 5), with low
precision but high recall; Tomato_Early_blight (class 4),
which was mediocre in both precision and recall; as well as

2555

Tomato_Late_blight (class 6) for having high precision but
mediocre recall.

Fig. 12 Model precision, recall, F1 Score, and support, evaluated for each
class

Finally, for support, Tomato__Tomato_mosaic_virus

(class 1) has the lowest support, whereas
Tomato__Tomato_YellowLeaf__Curl_Virus (class 2) has the
highest support. This is explained by the difference in number
of images within the classes, with 373 images for
Tomato__Tomato_mosaic_virus (class 1) as compared to
2081 images for
Tomato__Tomato_YellowLeaf__Curl_Virus (class 2). This
roughly explains the high F1 score of
Tomato__Tomato_YellowLeaf__Curl_Virus (class 2).
However, despite this, Tomato__Tomato_mosaic_virus
(class 1) and Tomato_Leaf_Mold (class 7) still have F1 scores
of over 90%. Thus, low support is not a major factor in
determining low F1 scores, though it still has a noticeable
effect. However, interestingly, Tomato__Target_Spot (class
0) has a low F1 score despite having relatively high support.
This is presumably due to difficulties in differentiating class
0 from the other classes, as shown by its low precision and
recall.

Figure 13 is the model's confusion matrix, which specifies
each class's precision and recall. First, a fair number of images
were falsely labeled as Tomato_healthy (class 5), and to a
lesser extent Tomato__Target_Spot (class 0),
Tomato__Early_blight (class 4) as well as
Tomato_Spider_mites_Two_spotted_spider_mite (class 9).
Classes 0, 4 and 9 were visually similar to healthy leaves.
However, only class 5 falls under 80% precision, which
means 9 out of 10 classes are still decently trustworthy.

Fig. 13 Confusion Matrix in Multiclass Label

As for recall, despite the relatively low precision of
Tomato_healthy (class 5), all images from this class were
predicted correctly. Thus, it can be deduced from the results
that the model has learned what a healthy leaf looks like, but
it has defined it too broadly. Conversely, the images from
Tomato__Target_Spot (class 0), Tomato_Early_blight (class
4), and Tomato_Late_blight (class 6) had more false
predictions, with most of the false predictions being from
class 0. Interestingly, most of the false predictions in class 6
fell under class 4. This is an acceptable outcome because both
classes predict the same disease at different stages. Only class
0 falls below a recall of 80%, meaning that for 9 out of 10
classes, the model is decently sensitive to the respective
predictions.

IV. CONCLUSION
Vision Transformer is selected to be the classification

model for detecting plant disease. It is effective in image
recognition and can learn the detailed features in the input on
its own with minimal manual processing. The model can
identify plant diseases regardless of leaf position within the
image. An application was developed using the transformer
model. It is evaluated using accuracy, precision, recall, and F1
score to comprehend its effectiveness more effectively. The
transformer model is enhanced by adding the Shift Patch
Tokenization, Positional Encoding, Multi-head Attention, and
Locality Self Attention modules. It achieved a final test
accuracy of 90%, with a significant reduction in variance for
accuracy, precision, recall, and F1 score across different
dataset classes, thus resulting in more accurate and consistent
identification.

However, it is limited by dataset availability, as some of
the classes have lower accuracy or F1 scores because of
having a small number of images and the limited computing
power for model training. While data augmentation can
alleviate some of the effects of the small dataset size, it is
undeniable that expanding the size and quality of the available
datasets would be immensely helpful in improving model
performance. Improvements in computing power would also
result in better-quality model training. Moreover, given that
Vision Transformer research is still relatively new, the
features and variables within the additional modules used in
the proposed model could still be further improved in future
research, giving opportunities to refine further and enhance
methods of plant disease identification, thus giving the
agricultural industry better tools for effective plant disease
treatment.

REFERENCES
[1] B. S. Bari et al., “A real-time approach of diagnosing rice leaf disease

using deep learning-based faster R-CNN framework,” PeerJ Computer
Science, vol. 7, p. e432, Apr. 2021, doi: 10.7717/peerj-cs.432.

[2] M. Y. Xin, L. W. Ang, and S. Palaniappan, “A Data Augmented
Method for Plant Disease Leaf Image Recognition based on Enhanced
GAN Model Network,” Journal of Informatics and Web Engineering,
vol. 2, no. 1, pp. 1–12, Mar. 2023, doi: 10.33093/jiwe.2023.2.1.1.

[3] G. B.V. and U. D. G., “Identifying and classifying plant disease using
resilient LF-CNN,” Ecological Informatics, vol. 63, p. 101283, Jul.
2021, doi: 10.1016/j.ecoinf.2021.101283.

[4] J. Zhang, Y. Rao, C. Man, Z. Jiang, and S. Li, “Identification of
cucumber leaf diseases using deep learning and small sample size for
agricultural Internet of Things,” International Journal of Distributed
Sensor Networks, vol. 17, no. 4, p. 155014772110074, Apr. 2021,

2556

doi:10.1177/15501477211007407.
[5] M. H. Saleem, S. Khanchi, J. Potgieter, and K. M. Arif, “Image-Based

Plant Disease Identification by Deep Learning Meta-Architectures,”
Plants, vol. 9, no. 11, p. 1451, Oct. 2020, doi: 10.3390/plants9111451.

[6] X. Li and S. Li, “Transformer Help CNN See Better: A Lightweight
Hybrid Apple Disease Identification Model Based on Transformers,”
Agriculture, vol. 12, no. 6, p. 884, Jun. 2022,
doi:10.3390/agriculture12060884.

[7] M. A. Genaev, E. S. Skolotneva, E. I. Gultyaeva, E. A. Orlova, N. P.
Bechtold, and D. A. Afonnikov, “Image-Based Wheat Fungi Diseases
Identification by Deep Learning,” Plants, vol. 10, no. 8, p. 1500, Jul.
2021, doi: 10.3390/plants10081500.

[8] J. Chen, D. Zhang, A. Zeb, and Y. A. Nanehkaran, “Identification of
rice plant diseases using lightweight attention networks,” Expert
Systems with Applications, vol. 169, p. 114514, May 2021,
doi:10.1016/j.eswa.2020.114514.

[9] R. Reedha, E. Dericquebourg, R. Canals, and A. Hafiane,
“Transformer Neural Network for Weed and Crop Classification of
High Resolution UAV Images,” Remote Sensing, vol. 14, no. 3, p. 592,
Jan. 2022, doi: 10.3390/rs14030592.

[10] H.-T. Thai, N.-Y. Tran-Van, and K.-H. Le, “Artificial Cognition for
Early Leaf Disease Detection using Vision Transformers,” 2021
International Conference on Advanced Technologies for
Communications (ATC), Oct. 2021,
doi:10.1109/atc52653.2021.9598303.

[11] Y. Xiong, L. Liang, L. Wang, J. She, and M. Wu, “Identification of
cash crop diseases using automatic image segmentation algorithm and
deep learning with expanded dataset,” Computers and Electronics in
Agriculture, vol. 177, p. 105712, Oct. 2020,
doi:10.1016/j.compag.2020.105712.

[12] Z. Zhang, Z. Gong, Q. Hong, and L. Jiang, “Swin-Transformer Based
Classification for Rice Diseases Recognition,” 2021 International
Conference on Computer Information Science and Artificial
Intelligence (CISAI), Sep. 2021, doi: 10.1109/cisai54367.2021.00036.

[13] Y. Borhani, J. Khoramdel, and E. Najafi, “A deep learning based
approach for automated plant disease classification using vision
transformer,” Scientific Reports, vol. 12, no. 1, Jul. 2022,
doi:10.1038/s41598-022-15163-0.

[14] W. Zhu, J. Sun, S. Wang, J. Shen, K. Yang, and X. Zhou, “Identifying
Field Crop Diseases Using Transformer-Embedded Convolutional
Neural Network,” Agriculture, vol. 12, no. 8, p. 1083, Jul. 2022,
doi:10.3390/agriculture12081083.

[15] S. Zhang, S. Zhang, C. Zhang, X. Wang, and Y. Shi, “Cucumber leaf
disease identification with global pooling dilated convolutional neural
network,” Computers and Electronics in Agriculture, vol. 162, pp.
422–430, Jul. 2019, doi: 10.1016/j.compag.2019.03.012.

[16] J. G. Arnal Barbedo, “Plant disease identification from individual
lesions and spots using deep learning,” Biosystems Engineering, vol.
180, pp. 96–107, Apr. 2019,
doi:10.1016/j.biosystemseng.2019.02.002.

[17] A. F. Fuentes, S. Yoon, J. Lee, and D. S. Park, “High-Performance
Deep Neural Network-Based Tomato Plant Diseases and Pests
Diagnosis System With Refinement Filter Bank,” Frontiers in Plant
Science, vol. 9, Aug. 2018, doi: 10.3389/fpls.2018.01162.

[18] P. Sharma, Y. P. S. Berwal, and W. Ghai, “Performance analysis of
deep learning CNN models for disease detection in plants using image
segmentation,” Information Processing in Agriculture, vol. 7, no. 4, pp.
566–574, Dec. 2020, doi: 10.1016/j.inpa.2019.11.001.

[19] A. M. Roy and J. Bhaduri, “A Deep Learning Enabled Multi-Class
Plant Disease Detection Model Based on Computer Vision,” AI, vol.
2, no. 3, pp. 413–428, Aug. 2021, doi: 10.3390/ai2030026.

[20] S. Wu, Y. Sun, and H. Huang, “Multi-granularity Feature Extraction
Based on Vision Transformer for Tomato Leaf Disease Recognition,”
2021 3rd International Academic Exchange Conference on Science
and Technology Innovation (IAECST), Dec. 2021,
doi:10.1109/iaecst54258.2021.9695688.

[21] J. Pandian, V. Kumar, O. Geman, M. Hnatiuc, M. Arif, and K.
Kanchanadevi, “Plant Disease Detection Using Deep Convolutional
Neural Network,” Applied Sciences, vol. 12, no. 14, p. 6982, Jul. 2022,
doi: 10.3390/app12146982.

[22] D. Wang, J. Wang, W. Li, and P. Guan, “T-CNN: Trilinear
convolutional neural networks model for visual detection of plant
diseases,” Computers and Electronics in Agriculture, vol. 190, p.
106468, Nov. 2021, doi: 10.1016/j.compag.2021.106468.

[23] D. Argüeso et al., “Few-Shot Learning approach for plant disease
classification using images taken in the field,” Computers and
Electronics in Agriculture, vol. 175, p. 105542, Aug. 2020,
doi:10.1016/j.compag.2020.105542.

[24] A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale,” Oct. 2020, [Online]. Available:
http://arxiv.org/abs/2010.11929

[25] S. H. Lee, H. Goëau, P. Bonnet, and A. Joly, “New perspectives on
plant disease characterization based on deep learning,” Computers and
Electronics in Agriculture, vol. 170, p. 105220, Mar. 2020,
doi:10.1016/j.compag.2020.105220.

[26] S. Ramesh and D. Vydeki, “Recognition and classification of paddy
leaf diseases using Optimized Deep Neural network with Jaya
algorithm,” Information Processing in Agriculture, vol. 7, no. 2, pp.
249–260, Jun. 2020, doi: 10.1016/j.inpa.2019.09.002.

[27] J. Annrose, N. H. A. Rufus, C. R. E. S. Rex, and D. G. Immanuel, “A
Cloud-Based Platform for Soybean Plant Disease Classification Using
Archimedes Optimization Based Hybrid Deep Learning Model,”
Wireless Personal Communications, vol. 122, no. 4, pp. 2995–3017,
Sep. 2021, doi: 10.1007/s11277-021-09038-2.

[28] M. Agarwal, S. Kr. Gupta, and K. K. Biswas, “Development of
Efficient CNN model for Tomato crop disease identification,”
Sustainable Computing: Informatics and Systems, vol. 28, p. 100407,
Dec. 2020, doi: 10.1016/j.suscom.2020.100407.

[29] R. and I. T. Association of Knowledge, Jāmiʻat Ibn Zuhr. École
nationale des sciences appliquées d’Agadir, and Institute of Electrical
and Electronics Engineers, Proceedings of 2019 International

Conference of Computer Science and Renewable Energies (ICCSRE) :

2019 July 22-24.
[30] Institute of Electrical and Electronics Engineers and Hindusthan

Institute of Technology, Proceedings of the International Conference

on Electronics and Sustainable Communication Systems (ICESC

2020) : 02-04, July 2020.

2557

