
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Forum Text Processing and Summarization

Yen-Wei Mak a, Hui-Ngo Goh a,*, Amy Hui-Lan Lim a

a Faculty of Computing and Informatics, Multimedia University, Cyberjaya, 63100, Malaysia

Corresponding author: *hngoh@mmu.edu.my

Abstract— Frequently Asked Questions (FAQs) are extensively studied in general domains like the medical field, but such frameworks

are lacking in domains such as software engineering and open-source communities. This research aims to bridge this gap by establishing

the foundations of an automated FAQ Generation and Retrieval framework specifically tailored to the software engineering domain.

The framework involves analyzing, ranking, performing sentiment analysis, and summarization techniques on open forums like

StackOverflow and GitHub issues. A corpus of Stack Overflow post data is collected to evaluate the proposed framework and the

selected models. Integrating state-of-the-art models of string-matching models, sentiment analysis models, summarization models, and

the proprietary ranking formula proposed in this paper forms a robust Automatic FAQ Generation and Retrieval framework to

facilitate developers' work. String matching, sentiment analysis, and summarization models are evaluated, and F1 scores of 71.31%,

74.90%, and 53.4% were achieved. Given the subjective nature of evaluations in this context, a human review is used to further validate

the effectiveness of the overall framework, with assessments made on relevancy, preferred ranking, and preferred summarization.

Future work includes improving summarization models by incorporating text classification and summarizing them individually (Kou

et al, 2023), as well as proposing feedback loop systems based on human reinforcement learning. Furthermore, efforts will be made to

optimize the framework by utilizing knowledge graphs for dimension reduction, enabling it to handle larger corpora effectively.

Keywords— Deep learning; forum processing; natural language processing; summarization; sentiment analysis.

Manuscript received 5 Dec. 2022; revised 9 Jul. 2023; accepted 26 Nov. 2023. Date of publication 31 Mar. 2024.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Many individuals have long considered finding answers

from online forums time-consuming and arduous. This is

primarily due to the scattered nature of the answers across

various forums, making it challenging to locate relevant

information. In the domain of software engineering, this issue

becomes even more prominent. According to Microsoft CEO

Satya Nadella, approximately 50 percent of searches fail to
yield sufficient results [1]. This problem is particularly

pronounced in software engineering, where identifying the

precise and optimal solution for a given problem can be highly

challenging.

While Automatic FAQ Generation, Question Generation,

and Answer Retrieval techniques have emerged, most studies

have focused on broad topics such as banking, healthcare, and

others. Additionally, because there are typically several

relevant posts to evaluate, and some articles might be lengthy,

identifying crucial information in online posts can be time-

consuming. As a result, this research aims to build upon prior

investigations and adapt proven methodologies from other

domains to the specific context of software engineering.

Leveraging various natural language processing (NLP)

techniques, including approaches like n-grams, this study

presents a comprehensive framework for achieving

Automatic FAQ Generation and Retrieval tailored explicitly

to the software engineering domain.

Existing work in the domain of FAQ processing has
predominantly centered on non-engineering fields, particularly

the medical domain [2]. However, the focus of this research is

primarily directed towards the software engineering field. By

exploring the existing findings, this paper aims to transfer any

applicable insights derived from previous studies.

Consequently, extensive reading has been undertaken to ensure

proficiency in handling technical languages and terminologies.

FAQ retrieval plays a pivotal role in ranking question-answer

pairs [3]. It involves retrieving the most relevant answers from

an extensive collection based on a user's query. However,

traditional methods for FAQ generation heavily rely on

extensive manual classification and software engineering

techniques [3]. Such approaches demand significant time and

effort to be executed. This concern has been underscored by

previous studies conducted by [4], [5], [6], [7]. Moreover,

425

JOIV : Int. J. Inform. Visualization, 8(1) - March 2024 425-433

manual classification and software engineering quality also

impact the framework's performance.

Various attempts and research have been undertaken to

address the issues and enhance existing methods. One

promising approach involves automating the process of FAQ

generation using NLP techniques[8]–[10]. [1], [3] have made

notable advancements in this area by leveraging deep learning

methods, specifically by combining Deep Matching Networks

(DMN) and Multihop Attention Networks for FAQ retrieval.

Deep Matching Network (DMN) is a deep learning model that

utilizes two matrix inputs to generate matching scores. These

matrices are constructed by computing the dot product of
word embeddings from both the questions and answers. The

DMN has shown effectiveness in capturing semantic

relationships between questions and answers. On the other

hand, Multihop Attention Networks have demonstrated their

efficacy in reasoning tasks such as answering questions,

which aligns with the focus of this paper. This network

incorporates multiple "hops" of attention to gather

information from the input and make predictions. It involves

an encoding step to encode the input and a decoder network

that iteratively attends to different parts of the input,

ultimately generating an output.

 [4] and [11] have proposed an approach encompassing the
entire architecture for achieving Auto-Faq-Gen. This

architecture includes web scraping, question construction, a

ranking algorithm, and question generation. [5] and [12] have

made notable strides in selecting, weighing, clustering, and

ranking contextual keywords. These advancements aim to

achieve question abstraction, thereby facilitating locating

pertinent questions and their corresponding answers within

open-source forums. The authors subsequently proposed a

solution in the form of semi-automatic FAQ generation,

which allows for improved organization and retrieval of

information. A study by [13] looked into the usage of

knowledge graph extra domain knowledge in generating a

comprehensive list of FAQs.

Another challenge arises when the questions posed by users

need help to easily be classified to align with the existing

questions in the FAQ database. This is often due to differences

in form or context between the user's questions and those

already in the database [12]. For instance, the user's question

may be in a different language or may be expressed in a

different format. In addition to contextual variations,

grammatical errors, and misspellings pose further obstacles

when developing automated question-answering systems, as

emphasized by [14]. These linguistic challenges necessitate

robust techniques to handle diverse language usage and to
interpret and respond to questions accurately. Context

matching plays a crucial role in ranking the answers to user

queries. However, the traditional approach of scoring

similarity based on Levenshtein distance, as highlighted by

[15], has limitations in effectively ranking answers. This is

because Levenshtein distance fails to capture the semantic

meaning of words, which is essential for accurate ranking.

Another concept worth considering is the Bag-of-Words

(BOW) model, as discussed by [16]. BOW similarity

matching algorithms can be applied to processed text,

including steps such as stop word removal and stemming,

calculating the similarity between the query and the answer.
However, like Levenshtein distance, BOW cannot capture the

semantic meaning of words. Consequently, it can lead to false

conceptual similarity between the query and the answer. To

overcome these limitations, more advanced techniques that

consider semantic meaning, such as semantic matching

models or neural network-based approaches, have been
proposed in recent research to improve the accuracy of answer

ranking in the context of user queries. Word knowledge or

word embedding offers a potential solution to enhance

traditional similarity-matching algorithms. [16] have

proposed a method that incorporates word knowledge to

enhance similarity matching. Their model connects a

knowledge base to individual words, constructing a

knowledge table encompassing raw words, hypernyms,

synonyms, and associative concepts. This approach deviates

from traditional similarity-matching algorithms by

considering the semantic meaning of words rather than just

the raw words themselves.

Stop words are commonly encountered in natural language

data and are typically filtered out during or after text

processing. However, the specific set of stop words used can

vary across natural language processing tools, and no

universal list applies to all applications. Technical languages

have their own unique set of stop words, which differs from

the general stop words list used in applications like the NLTK

library [17], [18], [19]. To address the need for specific stop

words for software engineering texts, [17] have developed a

list tailored to this domain. The list is created using statistical

identification techniques and evaluated by domain experts.

The detection of phrases can be achieved using the algorithm

proposed by [20]. This algorithm identifies frequently co-

occurring words, allowing the detection of meaningful

phrases within the text.

Sentiment analysis, or opinion mining, is a process used to

determine the sentiment expressed in a piece of writing,
classifying it as positive, negative, or neutral. It is commonly

employed to gain insights into people's attitudes and opinions

about various topics. For example, sentiment analysis can be

applied to assess public sentiment toward a new movie or to

understand the overall sentiment toward a newly launched

product. While social media platforms like Twitter[21],

Facebook[22], and Instagram[23] are frequently used as

sources for sentiment analysis, this technique can be applied to

any text data. In the context of government entities, [24] utilize

sentiment analysis to investigate further and comprehend the

needs and preferences of customers. Sentiment analysis can be
performed at different levels of granularity, which refers to the

level of detail at which sentiment is expressed. The three

primary levels of granularity are sentence-level, document-

level, and aspect-level. Considering the appropriate level of

granularity is crucial as it impacts the specific type of sentiment

analysis that can be conducted and the resulting insights that

will be obtained [24].

Abstractive summarization involves generating new

sentences that capture the original text's meaning. One common

approach to abstractive summarization is using a sequence-to-

sequence neural network, such as RNN or LSTM, which are

well-suited for processing sequential data like text. The
recurrent connections in these models enable them to maintain

a hidden state that retains information from previous steps in

the sequence, allowing them to capture contextual information

as they read the input text. This enables the model to generate

426

concise and semantically relevant summaries [25]. Abstract

Meaning Representation (AMR) is an RNN-based method

introduced by [26]. It utilizes a neural network model that

produces a single graph representing time series information in

the text to generate abstractive summaries. Another approach is
the Abstractive Text Summarization with Dual Learning

(ATSDL) model, which combines the advantages of extractive

and abstractive summarization. In this model, a sequence-to-

sequence neural network is used to generate the summary. Then

a sentence ranking model is employed to rank the sentences in

the generated summary.

In this work, we focus on answering the following research

questions:
 How effective is our question matching, sentiment

analysis and summarization model contributing for

FAQ in software engineering domains?
 Is the fine-tuned summarization model better than the

base BART model?
 How do humans perceive the answer given by our

proposed framework?

II. MATERIALS AND METHOD

The proposed framework is formulated based on a

fundamental assumption. It is observed that post titles

generally possess brevity and conciseness, serving as the

primary focal point for individuals seeking solutions to their

inquiries. Hence, it is reasonable to postulate that the title

effectively captures the essence of the corresponding post.

Given this perspective, it is crucial to acknowledge that all

comments and answers should be confined to the body of the

post itself, as it constitutes a comprehensive representation of

the information. When deploying a ranking system, it

becomes imperative to assess the post as a cohesive entity,

considering both its content and the accompanying responses.

Fig. 1 visually represents the proposed framework, illustrating

its components and their interactions.

Fig 1 Proposed Framework

A. Input

The framework initiates with an input layer, which

involves a user query. Subsequently, the system examines

whether the FAQ repository contains pertinent information. If

relevant information is available in the FAQ repository, it is

directly dispatched to the user. However, if such information

is not found, the entire cycle commences. A data gathering

process is initially executed, whereby relevant Stack

Overflow sites are scraped utilizing the Selenium tool and

stored. The gathered data is then passed on to the subsequent

step, the Inference Engine (B).

B. Inference Engine

1) Data Preparation:

In data organization, the information will be categorized

into distinct entities based on their types, namely posts,

comments, answers, and answer comments. This

categorization serves the purpose of enhancing data

management and facilitating subsequent analyses. It is

necessary to undertake this step due to the inherent lack of

organization in the provided CSV dataset, which hinders

efficient data handling. Fig. 2 and 3 show the comparison

between the unorganized and organized data.

Fig. 2 Unorganized data

Fig. 3 Organized data

Within the framework of string matching, three widely

adopted methods are FuzzyWuzzy, spaCy and roberta-large-

mnli model. FuzzyWuzzy is a battle-tested and state-of-the-

art model renowned for its exceptional performance in

approximate and partial string-matching tasks. It employs

sophisticated techniques, such as Levenshtein distance

calculations, to achieve remarkable results.

427

FuzzyWuzzy encompasses two distinct methods, partial

ratio, and token sort ratio. The partial ratio method quantifies

the similarity between two strings by assessing the ratio of the

longest contiguous matching substrings. It effectively handles

scenarios where matching substrings, rather than individual

characters, holds significant relevance. Conversely, the token

sort ratio method sorts the tokens within each string

alphabetically and computes the similarity ratio based on the

sorted token lists. This approach proves advantageous when

comparing strings with different word orders, as it captures

similarities that variations in word arrangement may obscure.

On the other hand, spaCy's similarity feature goes beyond

surface-level textual matching by capturing the semantic

nuances of words, phrases, and sentences. By leveraging

comprehensive word vectors derived from extensive text

corpora, spaCy deeply understands the intricate relationships

and meanings between words. This enhanced comprehension

significantly improves the accuracy and relevance of

similarity scores, thus providing a robust foundation for a

wide range of natural language processing tasks.

Another notable model in the realm of contextual string

similarity is RoBERTa. It is a powerful pre-trained model that

has been fine-tuned on the Multi-Genre Natural Language

Inference (MNLI) dataset. In string matching, entailment

refers to the logical relationship between two texts, where one

text logically follows from or can be inferred from the other.

Using RoBERTa, we can leverage its fine-tuned knowledge

to assess the likelihood of one string entailing or implying the

other. This approach enables us to capture surface-level

similarities and the underlying meaning and context of the

compared strings.

We employ the roberta-large-mnli pre-trained model,

specifically trained to perform natural language inference

tasks. Given two input texts, we encode them using the

model's tokenizer. Subsequently, the encoded texts are

processed through the RoBERTa model to obtain logits,

representing the probabilities of different entailment labels.

Applying a SoftMax function to these logits yields a

probability distribution over the entailment labels. Finally, we

extract the entailment probability associated with the

"ENTAILMENT" label, which indicates the likelihood of the

two texts being entailed.

2) Preprocessing:

To leverage the valuable information embedded in URLs

and understand the context of the data, it is crucial to

incorporate them into the dataset. URLs can provide

additional insights and references related to the data being

analyzed. Since the data is scraped and contains HTML tags,

extracting the URLs can be easily achieved using the

BeautifulSoup package.

By employing the capabilities of the BeautifulSoup

package, the URLs present within the data can be extracted

effectively. This allows for isolating the URLs from the rest

of the text, enabling their separate storage in a dedicated

column within the dataset. This organization facilitates easy

access to the URLs for future reference and analysis. By

storing the URLs in a separate column, the dataset maintains

its structural integrity and allows for the establishment of

connections between the data and the associated URLs. This

integration of URLs allows researchers to explore additional

information and enrich the understanding of the underlying

context within the dataset. Table I shows the chronology of

before and after of the URL removal.

TABLE I

ILLUSTRATION OF URL REMOVAL

Before URL Removal

’\n<p>You have to convert the response to json Please Look at this link with

await await

response.json();\nand then use setState.</p>\n\n<preclass="lang-
js s-code-block"><code class="hljslanguage-javascript"><span

class="hljs-titlefunction_">useEffect(<span class="hljs-
function">()=> { \n <span class="hljs-

variablelanguage_">console.<span class="hljs-

titlefunction_">log(<span class="hljs-
string">"useEffectTopTen has been called!"); \n

<spanclass="hljs-keyword">const</spanclass=> <span
class="hljs-titlefunction_">fetchdata = <spanclass="hljs-

keyword">async</spanclass=> (<spanclass="hljs-

params"></spanclass=>) => {\n <spanclass="hljs-
keyword">const</spanclass=> response = <spanclass="hljs-

keyword">await</spanclass=> api.<span class="hljs-
titlefunction_">topTen(); <span class="hljs-

comment">//this calls axios(url)\n <spanclass="hljs-
keyword">const</spanclass=> responseData = <span

class="hljs-keyword">await response.<span 83

class="hljs-title function_">json();\n <spanclass="hljs-
title function_">setLoading</spanclass=>(<spanclass="hljs-

literal">false</spanclass=>);\n <span class="hljs-
titlefunction_">setTopten(responseData.<spanclass="hlj

s-property">data</spanclass=>); \n <span class="hljs-

titlefunction_">setError(responseData.<spanclass="hljs-
property">error</spanclass=>); \n };\n\n fetchdata ();\n},

[]);\n</code></preclass=>\n ’

After URL Removal

’\n<p>You have to convert the response to json with await
response.json();\nand then usesetState.</p>\n\n<preclass="lang-

js s-code-block"><code class="hljslanguage-javascript"><span

class="hljs-titlefunction_">useEffect(<span class="hljs-
function">()=> { \n <span class="hljs-

variablelanguage_">console.<span class="hljs-
titlefunction_">log(<span class="hljs-

string">"useEffectTopTen has been called!"); \n

<spanclass="hljs-keyword">const <span class="hljs-
titlefunction_">fetchdata = <spanclass="hljs-

keyword">async (<spanclass="hljs-params">)
=> {\n <spanclass="hljs-keyword">const response =

<spanclass="hljs-keyword">await api.<span class="hljs-

titlefunction_">topTen(); <span class="hljs-
comment">//this calls axios(url)\n <spanclass="hljs-

keyword">const responseData = <spanclass="hljs-
keyword">await response.<span83class="hljs-title

function_">json();\n <spanclass="hljs-title

function_">setLoading(<spanclass="hljs-
literal">false);\n <span class="hljs-

titlefunction_">setTopten(responseData.<spanclass="hlj
s-property">data); \n <spanclass="hljs-

titlefunction_">setError(responseData.<spanclass="hljs-
property">error); \n };\n\n fetchdata

();\n},]);\n</code></pre>\n ’

428

Following the identification of special characters present in

the dataset that is scraped from Stack Overflow, the

subsequent step involves their removal. The dataset contains

a variety of special characters, and it is crucial to address this

issue as these characters can lead to undesired complications

during analysis. The list of special characters identified within

the dataset is [“(“, “)”,”,”, , License: CC BY-SA 4.0, segFault].

Removing special characters ensures data cleanliness and

facilitates subsequent processing and analysis tasks. By

eliminating these characters, the dataset becomes more

standardized and amenable to further analysis. The removal of

special characters is typically achieved through text

preprocessing techniques, such as pattern matching and

substitution. The framework recognizes the significance of

removing code blocks from the data. While code blocks may

not be a major concern in typical natural language processing

tasks, they are prevalent in Stack Overflow, which serves as a

platform for developers to seek assistance and share their

programming knowledge. Given the specific focus on Stack

Overflow data, the removal of code blocks becomes a crucial

step in the preprocessing process to minimize noise and

enhance the quality of the dataset as can be seen in Table II.

Code blocks within the data are typically enclosed within

triple quotes ("```" or "'''"). This distinctive pattern simplifies

the identification of code blocks within the pipeline, making

it straightforward to recognize and subsequently eliminate

them from the dataset. By removing code blocks, the

framework aims to refine the dataset and ensure that the

presence of code snippets does not influence the subsequent

analyses and modeling efforts.

TABLE II

CODEBLOCKS REMOVAL

Before Codeblocks Removal

’\n<p>You have to convert the response to json Please Look at this link
withawait awaitresponse.json();\nand then

use setState.</p>\n\n<preclass="lang-js s-code-block"><code
class="hljslanguage-javascript"><span class="hljs-

titlefunction_">useEffect(<span class="hljs-
function">()=> { \n <span class="hljs-

variablelanguage_">console.<span class="hljs-

titlefunction_">log(<span class="hljs-
string">"useEffectTopTen has been called!"); \n

<spanclass="hljs-keyword">const <span class="hljs-
titlefunction_">fetchdata = <spanclass="hljs-

keyword">async (<spanclass="hljs-params">)

=> {\n <spanclass="hljs-keyword">const response =
<spanclass="hljs-keyword">await api.<span

class="hljs-titlefunction_">topTen(); <span class="hljs-
comment">//this calls axios(url)\n <spanclass="hljs-

keyword">const responseData = <spanclass="hljs-
keyword">await response.<span83class="hljs-title

function_">json();\n <spanclass="hljs-title

function_">setLoading(<spanclass="hljs-
literal">false);\n <span class="hljs-

titlefunction_">setTopten(responseData.<spanclass="hlj
s-property">data); \n <span class="hljs-

titlefunction_">setError(responseData.<span

class="hljs-property">error); \n };\n\n fetchdata ();\n},
[]);\n</code></pre>\n ’

After Codeblocks Removal

’\nYou have to convert the response to json Please Look at this
link with await await response.json();\nand then use

setState.\n\nuseEffect(() => { \n console.log("useEffect TopTen

has been called!"); \n const fetchdata = async () => {\n const
response = await api.topTen(); // this calls axios(url)\n const

responseData = await response.json();\n setLoading(false);\n
setTopten(responseData.data); \n setError(responseData.error);

\n };\n\n fetchdata (); \n}, []);\n\n ’

The presence of HTML tags in the data is a significant

concern that requires careful attention and removal during the

preprocessing phase. The scraping process involved in

collecting the data may inadvertently result in the inclusion of

HTML tags within the textual content. By leveraging the

distinctive pattern of HTML tags enclosed within angle

brackets ("<" and ">"), the framework can readily identify and

remove these tags. This step is essential to eliminate potential

interference, improve data integrity, and enhance readability

for subsequent text processing and analysis tasks as shown in

Table III.

TABLE III

 COMPARISON OF HTML TAGS REMOVAL

Before HTML Tags Removal

’\n<p>You have to convert the response to json Please Look at this link
withawait await

response.json();\nand then use setState.</p>\n\n<preclass="lang-

js s-code-block"><code class="hljslanguage-javascript"><span
class="hljs-titlefunction_">useEffect(<span class="hljs-

function">()=> { \n <span class="hljs-
variablelanguage_">console.<span class="hljs-

titlefunction_">log(<span class="hljs-

string">"useEffectTopTen has been called!"); \n
<spanclass="hljs-keyword">const <span class="hljs-

titlefunction_">fetchdata = <spanclass="hljs-
keyword">async (<spanclass="hljs-params">)

=> {\n <spanclass="hljs-keyword">const response =

<spanclass="hljs-keyword">await api.<span class="hljs-
titlefunction_">topTen(); <span class="hljs-

comment">//this calls axios(url)\n <spanclass="hljs-
keyword">const responseData = <spanclass="hljs-

keyword">await response.<span83class="hljs-title
function_">json();\n <spanclass="hljs-title

function_">setLoading(<spanclass="hljs-

literal">false);\n <span class="hljs-
titlefunction_">setTopten(responseData.<spanclass="hlj

s-property">data); \n <span class="hljs-
titlefunction_">setError(responseData.<span

class="hljs-property">error); \n };\n\n fetchdata ();

\n}, []);\n</code></pre>\n ’

After HTML Tags Removal

You have to convert the response to json Please Look at this link

with await await response.json();\nand then use setState.\n\n

useEffect(() => { \n console.log("useEffect TopTen has been
called!"); \n const fetchdata = async () => {\n const response =

await api.topTen(); // this calls axios(url)\n const responseData =
await response.json();\n setLoading(false);\n

setTopten(responseData.data); \n setError(responseData.error);

\n };\n\n fetchdata ();

429

The subsequent step entails identifying technology-related

stop words to facilitate the removal of these words from the

data. Stop words are commonly occurring words that do not

hold significant importance for the analysis and are frequently

used in the text.

Traditionally, the process of finding stop words has been a

laborious task involving the utilization of manually curated

stop word lists [17]. These lists can be sourced from various

origins, such as domain-specific or language-specific stop

word lists. However, in the case of our study, which focuses

on the software engineering domain, conventional stop word

lists need to be revised as they need more specificity to this

domain. Consequently, employing such general stop word

lists could introduce noise into the dataset.

To address this challenge, [18] has significantly

contributed by curating a stop word list explicitly tailored to

the software engineering domain. Their approach involved

thorough analysis of data extracted from patent documents,

which predominantly describe domains related to software

engineering. Notably, they employed a range of techniques,

including preprocessing methods, a ranking framework based

on term statistics, and an evaluation conducted by domain

experts on a term-by-term basis. The meticulously curated

stopword list developed by [18] is utilized in this study,

ensuring its relevance and suitability for our specific research

objectives.

It is essential to acknowledge that alternative methods exist

for deriving stop word lists, such as employing word clouds

to identify the most frequent words in the data and

subsequently removing them. However, such approaches may

need more precision as they do not consider the contextual

nuances of the data or the significance of individual words

within the dataset. Therefore, the comprehensive approach

proposed by [18] emerges as a more effective solution,

incorporating domain-specific considerations and expert

evaluation to curate the appropriate stopword list for the

software engineering domain. Table IV shows a sample of the

stop words list curated by the paper.

TABLE IV

A SAMPLE OF STOP WORDS LIST CURATED BY [13]

able above- mentioned accordingly across
along already alternatively always among

and/or anything anywhere better disclosure

In the field of NLP, text normalization techniques such as

lemmatization are employed to prepare sentences, words, and

documents for analysis. These techniques aim to reduce words

to their root or base form. For example, the terms "kick" and

"kicked" both stem from the verb "to kick," and it is desirable

for a NLP application to recognize this relationship.

3) Inferencing

To improve the effectiveness of information retrieval

systems, we propose a hybrid scoring mechanism that

incorporates TF-IDF (1), time relevance (2), and vote count

(3). The goal is to rank titles based on their relevance to a

given query while considering both textual similarity and

temporal proximity.

The mechanism begins by utilizing the TF-IDF method, a

statistical measure that evaluates how relevant a word is to a

document in a collection of documents. In addition to the TF-

IDF score, the mechanism incorporates the time relevance of

each title. The created date of each title is compared to the

current time, and a time difference score is calculated. This

score represents the temporal proximity of the title to the

present moment. The closer the created date is to the current

time, the higher the time score assigned to the title.

The formula for TF-IDF Score is as follows:

 wij = tfij x log(N/dfi) (1)

where

tfij : number of occurrences of i in

dfi :number of documents containing i

N = total number of documents

The formula for Time Score is as follows:

 Time Score = 100 – (r-n/t) *100 (2)

where

r: current time

n: created date

t: max time difference

Furthermore, the mechanism considers the vote count of

each title as an indicator of its popularity or relevance. The

vote count is transformed into a vote count score, considering

the minimum and maximum vote counts in the dataset. The

score is calculated as a percentage of the vote count's position

within the vote count range, ensuring that higher vote counts

receive higher scores.

The formula for Vote Count Score is as follows:

 Vote Count Score = 100 – (n – s / y – s) x 100 (3)

where n is created date, y is vote count, and s is min vote count.

To achieve a balanced ranking, weightages are assigned to

each score component. In our approach, the TF-IDF matching

score carries a weightage of 80%, reflecting its primary

importance in capturing textual similarity. The time and vote

count scores contribute with weightages of 10% each,

acknowledging their relevance but to a lesser degree than

textual similarity. It is observable based on our experimental

session, where the ratio of 80:10:10 is the best setting we’ve

settled in.

The formula to Calculate the Weighted Score is as follows:

Weighted Score = (w*s) + (x*Time Score)+(z*Vote
Count Score)

(4)

where s is min vote count, w is TF-IDF weightage, x is time

weightage, and z is vote weightage.

The final weighted score for each title is obtained by

combining the TD-IDF matching score, time score, and vote

count score according to their respective weightages. The

mechanism sorts the titles based on the weighted scores in

descending order, ensuring that titles with higher overall

scores are ranked higher in the retrieval results.

Sentiment analysis, also known as opinion mining, is a

crucial process in determining the sentiment or attitude

expressed in a piece of writing, whether positive, negative, or

neutral. In the context of our framework, sentiment analysis

plays a pivotal role in enhancing the ranking of posts. Upon

scoring the posts using the sentence scoring method and

assessing their relevance, it becomes apparent that the scores

alone may not offer sufficient information to judge the

usefulness of a post. To overcome this limitation, sentiment

430

analysis is introduced as an additional factor in the ranking

process.

By conducting sentiment analysis, the assumption is made

that posts with a positive sentiment are more likely to be

useful than those with a negative sentiment. This assumption

allows for incorporating sentiment analysis as an additional

layer of filtering within the ranking aspect of the framework.

Initially, the Twitter RoBERTa base sentiment analysis model

is employed, given its popularity with over 2 million

applications this month. This model is based on RoBERTa, a

widely utilized transformer-based model, and has been trained

on an extensive dataset encompassing approximately 124

million tweets from January 2018 to December 2021.

However, subsequent research revealed a superior alternative.

In the latest study, the Senti4SD [27] model was utilized,

surpassing the performance of the Twitter RoBERTa base

sentiment analysis model significantly. Senti4SD is an

emotion polarity classifier for sentiment analysis in

developers' communication channels. This model was trained

and evaluated using a gold standard dataset comprising over

4,000 posts extracted from Stack Overflow. It is a Collab

Emotion Mining Toolkit (EMTk) component, catering to

sentiment analysis requirements in software development

contexts. The Senti4SD model demonstrates remarkable

performance by accurately predicting sentiment and

providing probability scores for three sentiment classes:

positive, negative, and neutral. Leveraging the capabilities of

this model allows for the determination of sentiment

expressed in each text, with corresponding probability scores

assigned to each sentiment class. Training on a domain-

specific dataset from Stack Overflow enhances its

effectiveness in capturing sentiments prevalent in developers'

communication channels.

Incorporating the Senti4SD model into the framework

elevates the accuracy and reliability of the sentiment analysis

process. A comprehensive understanding of the posts'

usefulness and relevance is obtained by considering the

sentiment expressed in each post alongside the sentence

scores. This refined approach enables a more precise ranking

of the posts within the framework, facilitating improved

decision-making based on sentiment analysis.

As the framework reaches the final stage of the pipeline, it

aims to enhance the user experience by providing a summary

of the top 5 ranked posts. Summarization involves condensing

a text document to create a concise summary that captures the

critical points of the original document. The goal of

summarization is to reduce the length of the text while

preserving the most essential information. In our framework,

summarization is critical as it enables users to comprehend the

posts more efficiently, quickly, and effortlessly. By

generating summaries of the top 5 sentiment-ranked posts, we

aim to facilitate a better understanding of the content and

enable users to grasp the essential information more easily.

The chosen model for summarization is the widely used

Bidirectional and Autoregressive Transformer (BART) large

CNN model [28], which has been utilized more than 1 million

times this month. BART is a transformer-based encoder-

decoder model that combines bidirectional encoding (similar

to BERT) and autoregressive decoding (similar to GPT). It

has been pretrained on English language data and fine-tuned

on the CNN Daily Mail dataset. To enhance the performance

of the BART model for our specific use case, we have

conducted fine-tuning using the SOSum dataset [29]. This

dataset consists of extractive summaries from 2,278 Stack

Overflow posts related to 506 of the most popular Stack

Overflow questions. This fine-tuning aims to tailor the BART

model to understand better and generate summaries specifically

for Stack Overflow posts. In the final section of this paper, we

will present and discuss the results of the fine-tuned BART

model and compare its performance to the base model. This

analysis will demonstrate how the fine-tuned model

outperforms the original model, highlighting its effectiveness

in generating more accurate and informative summaries.

III. RESULTS AND DISCUSSION

We conduct both quantitative experiments and user studies.

This section will describe the outcome of our experiments and

user studies.

A. Datasets Descriptions

It is important to note that all the selected datasets are closely

related to software engineering domains or at least have the

exact nature of technicality in online forums. The dataset used

to evaluate the question-matching methods is the Quora

questions pair dataset because it provides pairs of questions, i.e.,

it contains two questions with the same meaning. The ground

truth is the set of labels supplied by human experts. To evaluate

the Sentiment Analysis model, the dataset chosen was the gold

standard Stackoverflow dataset [30]; the data are directly

scraped from Stack Overflow, thus making perfect sense to our

research work. Lastly, the summarization evaluation datasets

are from SOSum [29]. This dataset consists of extractive

summaries from 2,278 Stack Overflow posts related to 506 of

the most popular Stack Overflow questions.

B. Evaluation

1) Question matching models:

Four different methods are tested: fuzzy wuzzy partial ratio,

fuzzy wuzzy token sort, spacy similarity, and the roberta-large-

mnli model. The four methods are evaluated using the Quora

questions pair dataset, confusion matrices, F1, recall, and

precision scores, which are noted down to perform further

analysis as in Table V.

TABLE V

QUESTION MATCHING MODELS EVALUATION METRICS

Models Precision Recall F1

Fuzzy wuzzy partial ratio 30.03% 52.61% 38.23%
Fuzzy wuzzy token sort 29.10% 56.12% 38.33%

Spacy Similarity 96.35% 40.24% 56.77%

roberta-large-mnli-entailment 76.70% 66.63% 71.31%

The roberta-large-mnli-entailment model shows us that

including entailment is crucial in understanding semantic

meaning of the sentences when comparing the similarity

between two sentences, therefore this model is chosen as our

framework.

2) Sentiment analysis models:

The RoBERTa model and Senti4SD model are both tested.

Similarly, confusion matrices, F1, recall, and precision scores

are detailed in Table VI. Senti4SD is the better choice for our

431

use case, as the model is trained explicitly on Stackoverflow’s

data.

TABLE VI

SENTIMENT ANALYSIS MODELS EVALUATION METRICS

Models Precision Recall F1

Roberta 68% 69% 68%

Senti4SD 60% 100% 84%

3) Summarization models

As part of our research work, this paper fine-tunes a base

BART model with the SOSum [29] datasets to improve its

accuracy further. Both models are evaluated with the SOSum

model. It is important to note that the datasets used to fine-

tune the BART model are split into training and evaluation

datasets, whereby the training data is fed into the model while

fine-tuning, and the evaluation datasets are treated as unseen

data.

Three evaluation methods in ROUGE are used in our

evaluation process. Rouge-1 evaluates individual words,

Rouge-2 assesses word pairs, and Rouge-L considers overall

structure and content overlap. Using a combination of metrics

provides a comprehensive evaluation. The suitability of each

metric varies based on specific evaluation needs. Rouge-1 is

helpful for keyword accuracy, Rouge-2 focuses on cohesion

and fluency, and Rouge-L allows word order and sentence

structure flexibility. By considering multiple metrics, a

broader range of summary qualities can be assessed, offering

a more holistic view of system performance. Ultimately, the

choice should align with the goals and requirements of the

summarization task. Approaching a near 60% accuracy in

abstractive summarization is reasonable based on state-of-the-

art evaluated models [31]. Table VII(A-C) shows the

performance results of respective ROUGE.

TABLE VII (A)

SUMMARIZATION MODELS EVALUATION METRICS - ROUGE-1

Models Precision Recall F1

Base BART 22.40% 83.24% 34.43%
Fine-tuned BART 46.01% 75.36% 53.47%

TABLE VII (B)

SUMMARIZATION MODELS EVALUATION METRICS - ROUGE-2

Models Precision Recall F1

Base BART 14.70 70.95% 23.69%

Fine-tuned BART 40.32% 69.85% 47.12%

TABLE VII (C)

SUMMARIZATION MODELS EVALUATION METRICS - ROUGE-L

Models Precision Recall F1

Base BART 21.88% 81.41% 33.64%

Fine-tuned BART 45.72% 74.96% 53.16%

4) Verdict by human evaluation

Apart from individual model evaluations, the paper

combines all models and ultimately proposes a framework to

help developers filter, analyze, and summarize online forums.

10 pairs of questions and answers denote generating 10

queries and feeding to the model to infer the best Stack

Overflow posts. The experiment is set up whereby the original

post and the summarized content are presented to the testers.

10 undergraduate students with a computer science

background are then picked from our institution to perform

human evaluations. A question sheet will then be presented to

each tester alongside 10 questions and answers generated by

the proposed framework. The question sheet contains 3

checkboxes: relevancy, preferred ranking, and preferred

summarization. Relevancy indicates if the answers are

relevant to the query, and preferred ranking indicates if the

sorting of the questions and answer pairs is correct. Lastly,

preferred summarization indicates if the summarization

outputs are beneficial in understanding the content of the

answers. The results are shown in Table VIII.

TABLE VIII

HUMAN EVALUATION METRICS ON THE OVERALL PROPOSED FRAMEWORK

Question Relevancy
Preferred

Ranking

Preferred

Summarization

1 100% 60% 50%

2 100% 70% 10%
3 100% 60% 40%

4 100% 80% 10%
5 100% 50% 30%

6 100% 50% 50%

7 100% 40% 50%
8 100% 80% 20%

9 100% 50% 40%
10 100% 60% 50%

Averaged: 100% 60% 35%

IV. CONCLUSION

This paper presents an Automated Frequently Asked

Question Generation and Retrieval framework specifically

tailored for the software engineering domain. The framework

addresses the challenges software engineers face when

seeking solutions on open forums like Stack Overflow. The

proposed framework achieves promising results by

integrating state-of-the-art models from domains such as

string matching, sentiment analysis, and summarization, with

F1 scores of 71.31%, 74.90%, and 53.4%, respectively. A user

study involving 10 participants was conducted to evaluate the

framework, with assessments on relevancy, preferred ranking,

and preferred summarization. The results indicate high

relevance scores (100%) while ranking and summarization

obtained average scores of 60% and 35%, respectively.

Thorough evaluations have been conducted on each

individual component, confirming their viability within our

framework. The fine-tuned BART model has demonstrated

superior performance compared to the baseline model,

achieving a higher score. However, integrating these

components into a combined framework has further enhanced

the overall results. Future work includes improving

summarization models by incorporating text classification

and summarizing them individually [32], as well as proposing

feedback loop systems based on human reinforcement

learning. Furthermore, efforts will be made to optimize the

framework by utilizing knowledge graphs for dimension

reduction, enabling it to handle larger corpora effectively.

REFERENCES

[1] S. Gupta and V. R. Carvalho, “FAQ Retrieval Using Attentive

Matching,” Proceedings of the 42nd International ACM SIGIR

Conference on Research and Development in Information Retrieval,

Jul. 2019, doi: 10.1145/3331184.3331294.

[2] F. Raazaghi, “Auto-FAQ-Gen: Automatic Frequently Asked

Questions Generation,” Lecture Notes in Computer Science, pp. 334–

337, 2015, doi: 10.1007/978-3-319-18356-5_30.

432

[3] W.-C. Hu, D.-F. Yu, and H. C. Jiau, “A FAQ Finding Process in Open

Source Project Forums,” 2010 Fifth International Conference on

Software Engineering Advances, Aug. 2010,

doi:10.1109/icsea.2010.46.

[4] S. Hens, M. Monperrus, and M. Mezini, “Semi-automatically

extracting FAQs to improve accessibility of software development

knowledge,” 2012 34th International Conference on Software

Engineering (ICSE), Jun. 2012, doi: 10.1109/icse.2012.6227139.

[5] F. Razzaghi, H. Minaee, and A. A. Ghorbani, “Context Free

Frequently Asked Questions Detection Using Machine Learning

Techniques,” 2016 IEEE/WIC/ACM International Conference on Web

Intelligence (WI), Oct. 2016, doi: 10.1109/wi.2016.0095.

[6] A. Virani, R. Yadav, P. Sonawane, and S. Jawale, “Automatic

Question Answer Generation using T5 and NLP,” 2023 International

Conference on Sustainable Computing and Smart Systems (ICSCSS),

Jun. 2023, doi: 10.1109/icscss57650.2023.10169726.

[7] S. Gangopadhyay and S. M. Ravikiran, “Focused Questions and

Answer Generation by Key Content Selection,” 2020 IEEE Sixth

International Conference on Multimedia Big Data (BigMM), Sep.

2020, doi: 10.1109/bigmm50055.2020.00017.

[8] S. Dutta, H. Assem, and E. Burgin, “Sequence-to-sequence learning

on keywords for efficient FAQ retrieval,” arXiv preprint

arXiv:2108.10019, 2021, doi: 10.48550/arXiv.2108.10019.

[9] V. Jijkoun and M. de Rijke, “Retrieving answers from frequently asked

questions pages on the web,” Proceedings of the 14th ACM

international conference on Information and knowledge management,

Oct. 2005, doi: 10.1145/1099554.1099571.

[10] T. Makino, T. Noro, and T. Iwakura, “An FAQ Search Method Using

a Document Classifier Trained with Automatically Generated Training

Data,” Lecture Notes in Computer Science, pp. 295–305, 2016,

doi:10.1007/978-3-319-42911-3_25.

[11] S. Vasisht, V. Tirthani, A. Eppa, P. Koujalgi, and R. Srinath,

“Automatic FAQ Generation Using Text-to-Text Transformer Model,”

2022 3rd International Conference for Emerging Technology (INCET),

May 2022, doi: 10.1109/incet54531.2022.9823967.

[12] G. Kothari, S. Negi, T. A. Faruquie, V. T. Chakaravarthy, and L. V.

Subramaniam, “SMS based interface for FAQ retrieval,” in

Proceedings of the Joint Conference of the 47th Annual Meeting of the

ACL and the 4th International Joint Conference on Natural Language

Processing of the AFNLP, 2009, pp. 852–860.

[13] S. Zhang, Y. Hu, and G. Bian, “Research on string similarity algorithm

based on Levenshtein Distance,” 2017 IEEE 2nd Advanced

Information Technology, Electronic and Automation Control

Conference (IAEAC), Mar. 2017, doi: 10.1109/iaeac.2017.8054419.

[14] G. Zhou, Y. Liu, F. Liu, D. Zeng, and J. Zhao, “Improving question

retrieval in community question answering using world knowledge,”

in Twenty-third international joint conference on artificial intelligence,

2013.

[15] M. Gerlach, H. Shi, and L. A. N. Amaral, “A universal information

theoretic approach to the identification of stopwords,” Nature Machine

Intelligence, vol. 1, no. 12, pp. 606–612, Dec. 2019,

doi:10.1038/s42256-019-0112-6.

[16] S. Sarica and J. Luo, “Stopwords in technical language processing,”

PLOS ONE, vol. 16, no. 8, p. e0254937, Aug. 2021,

doi:10.1371/journal.pone.0254937.

[17] C. P. Chai, “Comparison of text preprocessing methods,” Natural

Language Engineering, vol. 29, no. 3, pp. 509–553, Jun. 2022,

doi:10.1017/s1351324922000213.

[18] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,

“Distributed representations of words and phrases and their

compositionality,” Adv Neural Inf Process Syst, vol. 26, 2013.

[19] Y. Wang, J. Guo, C. Yuan, and B. Li, “Sentiment analysis of Twitter

data,” Applied Sciences, vol. 12, no. 22, p. 11775, 2022,

doi:10.3390/app122211775.

[20] Y.-C. Fung, L.-K. Lee, K. T. Chui, G. H.-K. Cheung, C.-H. Tang, and

S.-M. Wong, “Sentiment Analysis and Summarization of Facebook

Posts on News Media,” Advances in Data Mining and Database

Management, pp. 142–154, 2022, doi: 10.4018/978-1-7998-8413-

2.ch006.

[21] C.-P. Chan and J.-H. Yang, “Instagram Text Sentiment Analysis

Combining Machine Learning and NLP,” ACM Transactions on Asian

and Low-Resource Language Information Processing, Jul. 2023,

doi:10.1145/3606370.

[22] O. Alqaryouti, N. Siyam, A. Abdel Monem, and K. Shaalan, “Aspect-

based sentiment analysis using smart government review data,”

Applied Computing and Informatics, vol. 20, no. 1/2, pp. 142–161, Jul.

2020, doi: 10.1016/j.aci.2019.11.003.

[23] D. Yadav, J. Desai, and A. K. Yadav, “Automatic text summarization

methods: A comprehensive review,” arXiv preprint arXiv:2204.01849,

2022, doi: 10.48550/arXiv.2204.01849.

[24] L. Banarescu et al., “Abstract meaning representation for sembanking,”

in Proceedings of the 7th linguistic annotation workshop and

interoperability with discourse, 2013, pp. 178–186.

[25] F. Calefato, F. Lanubile, F. Maiorano, and N. Novielli, “Sentiment

polarity detection for software development,” Proceedings of the 40th

International Conference on Software Engineering, May 2018,

doi:10.1145/3180155.3182519.

[26] M. Lewis et al., “Bart: Denoising sequence-to-sequence pre-training

for natural language generation, translation, and comprehension,”

arXiv preprint arXiv:1910.13461, 2019,

doi:10.48550/arXiv.1910.13461.

[27] B. Kou, Y. Di, M. Chen, and T. Zhang, “SOSum,” Proceedings of the

19th International Conference on Mining Software Repositories, May

2022, doi: 10.1145/3524842.3528487.

[28] N. Novielli, F. Calefato, and F. Lanubile, “A gold standard for emotion

annotation in stack overflow,” Proceedings of the 15th International

Conference on Mining Software Repositories, May 2018,

doi:10.1145/3196398.3196453.

[29] A. A. Syed, F. L. Gaol, and T. Matsuo, “A Survey of the State-of-the-

Art Models in Neural Abstractive Text Summarization,” IEEE Access,

vol. 9, pp. 13248–13265, 2021, doi: 10.1109/access.2021.3052783.

[30] B. Kou, M. Chen, and T. Zhang, “Automated Summarization of Stack

Overflow Posts,” arXiv preprint arXiv:2305.16680, 2023,

doi:10.48550/arXiv.2305.16680.

433

