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Abstract— Frequently Asked Questions (FAQs) are extensively studied in general domains like the medical field, but such frameworks 

are lacking in domains such as software engineering and open-source communities. This research aims to bridge this gap by establishing 

the foundations of an automated FAQ Generation and Retrieval framework specifically tailored to the software engineering domain. 

The framework involves analyzing, ranking, performing sentiment analysis, and summarization techniques on open forums like 

StackOverflow and GitHub issues. A corpus of Stack Overflow post data is collected to evaluate the proposed framework and the 

selected models. Integrating state-of-the-art models of string-matching models, sentiment analysis models, summarization models, and 

the proprietary ranking formula proposed in this paper forms a robust Automatic FAQ Generation and Retrieval framework to 

facilitate developers' work. String matching, sentiment analysis, and summarization models are evaluated, and F1 scores of 71.31%, 

74.90%, and 53.4% were achieved. Given the subjective nature of evaluations in this context, a human review is used to further validate 

the effectiveness of the overall framework, with assessments made on relevancy, preferred ranking, and preferred summarization. 

Future work includes improving summarization models by incorporating text classification and summarizing them individually (Kou 

et al, 2023), as well as proposing feedback loop systems based on human reinforcement learning. Furthermore, efforts will be made to 

optimize the framework by utilizing knowledge graphs for dimension reduction, enabling it to handle larger corpora effectively. 
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I. INTRODUCTION

Many individuals have long considered finding answers 

from online forums time-consuming and arduous. This is 

primarily due to the scattered nature of the answers across 

various forums, making it challenging to locate relevant 

information. In the domain of software engineering, this issue 

becomes even more prominent. According to Microsoft CEO 

Satya Nadella, approximately 50 percent of searches fail to 
yield sufficient results [1]. This problem is particularly 

pronounced in software engineering, where identifying the 

precise and optimal solution for a given problem can be highly 

challenging. 

While Automatic FAQ Generation, Question Generation, 

and Answer Retrieval techniques have emerged, most studies 

have focused on broad topics such as banking, healthcare, and 

others. Additionally, because there are typically several 

relevant posts to evaluate, and some articles might be lengthy, 

identifying crucial information in online posts can be time-

consuming. As a result, this research aims to build upon prior 

investigations and adapt proven methodologies from other 

domains to the specific context of software engineering. 

Leveraging various natural language processing (NLP) 

techniques, including approaches like n-grams, this study 

presents a comprehensive framework for achieving 

Automatic FAQ Generation and Retrieval tailored explicitly 

to the software engineering domain. 

Existing work in the domain of FAQ processing has 
predominantly centered on non-engineering fields, particularly 

the medical domain [2]. However, the focus of this research is 

primarily directed towards the software engineering field. By 

exploring the existing findings, this paper aims to transfer any 

applicable insights derived from previous studies. 

Consequently, extensive reading has been undertaken to ensure 

proficiency in handling technical languages and terminologies. 

FAQ retrieval plays a pivotal role in ranking question-answer 

pairs [3]. It involves retrieving the most relevant answers from 

an extensive collection based on a user's query. However, 

traditional methods for FAQ generation heavily rely on 

extensive manual classification and software engineering 

techniques [3]. Such approaches demand significant time and 

effort to be executed. This concern has been underscored by 

previous studies conducted by [4], [5], [6], [7]. Moreover, 
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manual classification and software engineering quality also 

impact the framework's performance. 

Various attempts and research have been undertaken to 

address the issues and enhance existing methods. One 

promising approach involves automating the process of FAQ 

generation using NLP techniques[8]–[10]. [1], [3] have made 

notable advancements in this area by leveraging deep learning 

methods, specifically by combining Deep Matching Networks 

(DMN) and Multihop Attention Networks for FAQ retrieval. 

Deep Matching Network (DMN) is a deep learning model that 

utilizes two matrix inputs to generate matching scores. These 

matrices are constructed by computing the dot product of 
word embeddings from both the questions and answers. The 

DMN has shown effectiveness in capturing semantic 

relationships between questions and answers. On the other 

hand, Multihop Attention Networks have demonstrated their 

efficacy in reasoning tasks such as answering questions, 

which aligns with the focus of this paper. This network 

incorporates multiple "hops" of attention to gather 

information from the input and make predictions. It involves 

an encoding step to encode the input and a decoder network 

that iteratively attends to different parts of the input, 

ultimately generating an output. 

 [4] and [11] have proposed an approach encompassing the 
entire architecture for achieving Auto-Faq-Gen. This 

architecture includes web scraping, question construction, a 

ranking algorithm, and question generation. [5] and [12] have 

made notable strides in selecting, weighing, clustering, and 

ranking contextual keywords. These advancements aim to 

achieve question abstraction, thereby facilitating locating 

pertinent questions and their corresponding answers within 

open-source forums. The authors subsequently proposed a 

solution in the form of semi-automatic FAQ generation, 

which allows for improved organization and retrieval of 

information. A study by [13] looked into the usage of 

knowledge graph extra domain knowledge in generating a 

comprehensive list of FAQs. 

Another challenge arises when the questions posed by users 

need help to easily be classified to align with the existing 

questions in the FAQ database. This is often due to differences 

in form or context between the user's questions and those 

already in the database [12]. For instance, the user's question 

may be in a different language or may be expressed in a 

different format. In addition to contextual variations, 

grammatical errors, and misspellings pose further obstacles 

when developing automated question-answering systems, as 

emphasized by [14]. These linguistic challenges necessitate 

robust techniques to handle diverse language usage and to 
interpret and respond to questions accurately. Context 

matching plays a crucial role in ranking the answers to user 

queries. However, the traditional approach of scoring 

similarity based on Levenshtein distance, as highlighted by 

[15], has limitations in effectively ranking answers. This is 

because Levenshtein distance fails to capture the semantic 

meaning of words, which is essential for accurate ranking. 

Another concept worth considering is the Bag-of-Words 

(BOW) model, as discussed by [16]. BOW similarity 

matching algorithms can be applied to processed text, 

including steps such as stop word removal and stemming, 

calculating the similarity between the query and the answer. 
However, like Levenshtein distance, BOW cannot capture the 

semantic meaning of words. Consequently, it can lead to false 

conceptual similarity between the query and the answer. To 

overcome these limitations, more advanced techniques that 

consider semantic meaning, such as semantic matching 

models or neural network-based approaches, have been 
proposed in recent research to improve the accuracy of answer 

ranking in the context of user queries. Word knowledge or 

word embedding offers a potential solution to enhance 

traditional similarity-matching algorithms. [16] have 

proposed a method that incorporates word knowledge to 

enhance similarity matching. Their model connects a 

knowledge base to individual words, constructing a 

knowledge table encompassing raw words, hypernyms, 

synonyms, and associative concepts. This approach deviates 

from traditional similarity-matching algorithms by 

considering the semantic meaning of words rather than just 

the raw words themselves. 

Stop words are commonly encountered in natural language 

data and are typically filtered out during or after text 

processing. However, the specific set of stop words used can 

vary across natural language processing tools, and no 

universal list applies to all applications. Technical languages 

have their own unique set of stop words, which differs from 

the general stop words list used in applications like the NLTK 

library [17], [18], [19]. To address the need for specific stop 

words for software engineering texts, [17] have developed a 

list tailored to this domain. The list is created using statistical 

identification techniques and evaluated by domain experts. 

The detection of phrases can be achieved using the algorithm 

proposed by [20]. This algorithm identifies frequently co-

occurring words, allowing the detection of meaningful 

phrases within the text. 

Sentiment analysis, or opinion mining, is a process used to 

determine the sentiment expressed in a piece of writing, 
classifying it as positive, negative, or neutral. It is commonly 

employed to gain insights into people's attitudes and opinions 

about various topics. For example, sentiment analysis can be 

applied to assess public sentiment toward a new movie or to 

understand the overall sentiment toward a newly launched 

product. While social media platforms like Twitter[21], 

Facebook[22], and Instagram[23] are frequently used as 

sources for sentiment analysis, this technique can be applied to 

any text data. In the context of government entities, [24] utilize 

sentiment analysis to investigate further and comprehend the 

needs and preferences of customers. Sentiment analysis can be 
performed at different levels of granularity, which refers to the 

level of detail at which sentiment is expressed. The three 

primary levels of granularity are sentence-level, document-

level, and aspect-level. Considering the appropriate level of 

granularity is crucial as it impacts the specific type of sentiment 

analysis that can be conducted and the resulting insights that 

will be obtained [24]. 

Abstractive summarization involves generating new 

sentences that capture the original text's meaning. One common 

approach to abstractive summarization is using a sequence-to-

sequence neural network, such as RNN or LSTM, which are 

well-suited for processing sequential data like text. The 
recurrent connections in these models enable them to maintain 

a hidden state that retains information from previous steps in 

the sequence, allowing them to capture contextual information 

as they read the input text. This enables the model to generate 
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concise and semantically relevant summaries [25]. Abstract 

Meaning Representation (AMR) is an RNN-based method 

introduced by [26]. It utilizes a neural network model that 

produces a single graph representing time series information in 

the text to generate abstractive summaries. Another approach is 
the Abstractive Text Summarization with Dual Learning 

(ATSDL) model, which combines the advantages of extractive 

and abstractive summarization. In this model, a sequence-to-

sequence neural network is used to generate the summary. Then 

a sentence ranking model is employed to rank the sentences in 

the generated summary.  

In this work, we focus on answering the following research 

questions: 
 How effective is our question matching, sentiment 

analysis and summarization model contributing for 

FAQ in software engineering domains?  
 Is the fine-tuned summarization model better than the 

base BART model? 
 How do humans perceive the answer given by our 

proposed framework? 

II. MATERIALS AND METHOD 

The proposed framework is formulated based on a 

fundamental assumption. It is observed that post titles 

generally possess brevity and conciseness, serving as the 

primary focal point for individuals seeking solutions to their 

inquiries. Hence, it is reasonable to postulate that the title 

effectively captures the essence of the corresponding post. 

Given this perspective, it is crucial to acknowledge that all 

comments and answers should be confined to the body of the 

post itself, as it constitutes a comprehensive representation of 

the information. When deploying a ranking system, it 

becomes imperative to assess the post as a cohesive entity, 

considering both its content and the accompanying responses. 

Fig. 1 visually represents the proposed framework, illustrating 

its components and their interactions. 
 

 

Fig 1  Proposed Framework 

A. Input 

The framework initiates with an input layer, which 

involves a user query. Subsequently, the system examines 

whether the FAQ repository contains pertinent information. If 

relevant information is available in the FAQ repository, it is 

directly dispatched to the user. However, if such information 

is not found, the entire cycle commences. A data gathering 

process is initially executed, whereby relevant Stack 

Overflow sites are scraped utilizing the Selenium tool and 

stored. The gathered data is then passed on to the subsequent 

step, the Inference Engine (B). 

B. Inference Engine 

1) Data Preparation:  

In data organization, the information will be categorized 

into distinct entities based on their types, namely posts, 

comments, answers, and answer comments. This 

categorization serves the purpose of enhancing data 

management and facilitating subsequent analyses. It is 

necessary to undertake this step due to the inherent lack of 

organization in the provided CSV dataset, which hinders 

efficient data handling. Fig. 2 and 3 show the comparison 

between the unorganized and organized data. 

 

 

Fig. 2  Unorganized data 

 

 

Fig. 3  Organized data 

 

Within the framework of string matching, three widely 

adopted methods are FuzzyWuzzy, spaCy and roberta-large-

mnli model. FuzzyWuzzy is a battle-tested and state-of-the-

art model renowned for its exceptional performance in 

approximate and partial string-matching tasks. It employs 

sophisticated techniques, such as Levenshtein distance 

calculations, to achieve remarkable results. 
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FuzzyWuzzy encompasses two distinct methods, partial 

ratio, and token sort ratio. The partial ratio method quantifies 

the similarity between two strings by assessing the ratio of the 

longest contiguous matching substrings. It effectively handles 

scenarios where matching substrings, rather than individual 

characters, holds significant relevance. Conversely, the token 

sort ratio method sorts the tokens within each string 

alphabetically and computes the similarity ratio based on the 

sorted token lists. This approach proves advantageous when 

comparing strings with different word orders, as it captures 

similarities that variations in word arrangement may obscure. 

On the other hand, spaCy's similarity feature goes beyond 

surface-level textual matching by capturing the semantic 

nuances of words, phrases, and sentences. By leveraging 

comprehensive word vectors derived from extensive text 

corpora, spaCy deeply understands the intricate relationships 

and meanings between words. This enhanced comprehension 

significantly improves the accuracy and relevance of 

similarity scores, thus providing a robust foundation for a 

wide range of natural language processing tasks. 

Another notable model in the realm of contextual string 

similarity is RoBERTa. It is a powerful pre-trained model that 

has been fine-tuned on the Multi-Genre Natural Language 

Inference (MNLI) dataset. In string matching, entailment 

refers to the logical relationship between two texts, where one 

text logically follows from or can be inferred from the other. 

Using RoBERTa, we can leverage its fine-tuned knowledge 

to assess the likelihood of one string entailing or implying the 

other. This approach enables us to capture surface-level 

similarities and the underlying meaning and context of the 

compared strings. 

We employ the roberta-large-mnli pre-trained model, 

specifically trained to perform natural language inference 

tasks. Given two input texts, we encode them using the 

model's tokenizer. Subsequently, the encoded texts are 

processed through the RoBERTa model to obtain logits, 

representing the probabilities of different entailment labels. 

Applying a SoftMax function to these logits yields a 

probability distribution over the entailment labels. Finally, we 

extract the entailment probability associated with the 

"ENTAILMENT" label, which indicates the likelihood of the 

two texts being entailed. 

2) Preprocessing: 

To leverage the valuable information embedded in URLs 

and understand the context of the data, it is crucial to 

incorporate them into the dataset. URLs can provide 

additional insights and references related to the data being 

analyzed. Since the data is scraped and contains HTML tags, 

extracting the URLs can be easily achieved using the 

BeautifulSoup package. 

By employing the capabilities of the BeautifulSoup 

package, the URLs present within the data can be extracted 

effectively. This allows for isolating the URLs from the rest 

of the text, enabling their separate storage in a dedicated 

column within the dataset. This organization facilitates easy 

access to the URLs for future reference and analysis. By 

storing the URLs in a separate column, the dataset maintains 

its structural integrity and allows for the establishment of 

connections between the data and the associated URLs. This 

integration of URLs allows researchers to explore additional 

information and enrich the understanding of the underlying 

context within the dataset. Table I shows the chronology of 

before and after of the URL removal.  

TABLE I 

ILLUSTRATION OF URL REMOVAL 

Before URL Removal 

’\n<p>You have to convert the response to json <a 
href="https://google.com">Please Look at this link</a> with 

await <a href="https://google.com">await</a> 

response.json();\nand then use setState.</p>\n\n<preclass="lang-
js s-code-block"><code class="hljslanguage-javascript"><span 

class="hljs-titlefunction_">useEffect</span>(<span class="hljs-
function">()=&gt;</span> { \n <span class="hljs-

variablelanguage_">console</span>.<span class="hljs-

titlefunction_">log</span>(<span class="hljs-
string">"useEffectTopTen has been called!"</span>); \n 

<spanclass="hljs-keyword">const</spanclass=> <span 
class="hljs-titlefunction_">fetchdata</span> = <spanclass="hljs-

keyword">async</spanclass=> (<spanclass="hljs-

params"></spanclass=>) =&gt; {\n <spanclass="hljs-
keyword">const</spanclass=> response = <spanclass="hljs-

keyword">await</spanclass=> api.<span class="hljs-
titlefunction_">topTen</span>(); <span class="hljs-

comment">//this calls axios(url)</span>\n <spanclass="hljs-
keyword">const</spanclass=> responseData = <span 

class="hljs-keyword">await</span> response.<span 83 

class="hljs-title function_">json</span>();\n <spanclass="hljs-
title function_">setLoading</spanclass=>(<spanclass="hljs-

literal">false</spanclass=>);\n <span class="hljs-
titlefunction_">setTopten</span>(responseData.<spanclass="hlj

s-property">data</spanclass=>); \n <span class="hljs-

titlefunction_">setError</span>(responseData.<spanclass="hljs-
property">error</spanclass=>); \n };\n\n fetchdata ();\n}, 

[]);\n</code></preclass=>\n ’ 

After URL Removal 

’\n<p>You have to convert the response to json with await 
response.json();\nand then usesetState.</p>\n\n<preclass="lang-

js s-code-block"><code class="hljslanguage-javascript"><span 

class="hljs-titlefunction_">useEffect</span>(<span class="hljs-
function">()=&gt;</span> { \n <span class="hljs-

variablelanguage_">console</span>.<span class="hljs-
titlefunction_">log</span>(<span class="hljs-

string">"useEffectTopTen has been called!"</span>); \n 

<spanclass="hljs-keyword">const</span> <span class="hljs-
titlefunction_">fetchdata</span> = <spanclass="hljs-

keyword">async</span> (<spanclass="hljs-params"></span>) 
=&gt; {\n <spanclass="hljs-keyword">const</span> response = 

<spanclass="hljs-keyword">await</span> api.<span class="hljs-

titlefunction_">topTen</span>(); <span class="hljs-
comment">//this calls axios(url)</span>\n <spanclass="hljs-

keyword">const</span> responseData = <spanclass="hljs-
keyword">await</span> response.<span83class="hljs-title 

function_">json</span>();\n <spanclass="hljs-title 

function_">setLoading</span>(<spanclass="hljs-
literal">false</span>);\n <span class="hljs-

titlefunction_">setTopten</span>(responseData.<spanclass="hlj
s-property">data</span>); \n <spanclass="hljs-

titlefunction_">setError</span>(responseData.<spanclass="hljs-
property">error</span>); \n };\n\n fetchdata 

();\n}, ]);\n</code></pre>\n ’ 
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Following the identification of special characters present in 

the dataset that is scraped from Stack Overflow, the 

subsequent step involves their removal. The dataset contains 

a variety of special characters, and it is crucial to address this 

issue as these characters can lead to undesired complications 

during analysis. The list of special characters identified within 

the dataset is [“(“, “)”,”,”, , License: CC BY-SA 4.0, segFault]. 

Removing special characters ensures data cleanliness and 

facilitates subsequent processing and analysis tasks. By 

eliminating these characters, the dataset becomes more 

standardized and amenable to further analysis. The removal of 

special characters is typically achieved through text 

preprocessing techniques, such as pattern matching and 

substitution. The framework recognizes the significance of 

removing code blocks from the data. While code blocks may 

not be a major concern in typical natural language processing 

tasks, they are prevalent in Stack Overflow, which serves as a 

platform for developers to seek assistance and share their 

programming knowledge. Given the specific focus on Stack 

Overflow data, the removal of code blocks becomes a crucial 

step in the preprocessing process to minimize noise and 

enhance the quality of the dataset as can be seen in Table II. 

Code blocks within the data are typically enclosed within 

triple quotes ("```" or "'''"). This distinctive pattern simplifies 

the identification of code blocks within the pipeline, making 

it straightforward to recognize and subsequently eliminate 

them from the dataset. By removing code blocks, the 

framework aims to refine the dataset and ensure that the 

presence of code snippets does not influence the subsequent 

analyses and modeling efforts. 

TABLE II 

CODEBLOCKS REMOVAL 

Before Codeblocks Removal 

’\n<p>You have to convert the response to json <a 

href="https://google.com">Please Look at this link</a> 
withawait <a 

Ref="https://google.com">await</a>response.json();\nand then 

use setState.</p>\n\n<preclass="lang-js s-code-block"><code 
class="hljslanguage-javascript"><span class="hljs-

titlefunction_">useEffect</span>(<span class="hljs-
function">()=&gt;</span> { \n <span class="hljs-

variablelanguage_">console</span>.<span class="hljs-

titlefunction_">log</span>(<span class="hljs-
string">"useEffectTopTen has been called!"</span>); \n 

<spanclass="hljs-keyword">const</span> <span class="hljs-
titlefunction_">fetchdata</span> = <spanclass="hljs-

keyword">async</span> (<spanclass="hljs-params"></span>) 

=&gt; {\n <spanclass="hljs-keyword">const</span> response = 
<spanclass="hljs-keyword">await</span> api.<span 

class="hljs-titlefunction_">topTen</span>(); <span class="hljs-
comment">//this calls axios(url)</span>\n <spanclass="hljs-

keyword">const</span> responseData = <spanclass="hljs-
keyword">await</span> response.<span83class="hljs-title 

function_">json</span>();\n <spanclass="hljs-title 

function_">setLoading</span>(<spanclass="hljs-
literal">false</span>);\n <span class="hljs-

titlefunction_">setTopten</span>(responseData.<spanclass="hlj
s-property">data</span>); \n <span class="hljs-

titlefunction_">setError</span>(responseData.<span 

class="hljs-property">error</span>); \n };\n\n fetchdata ();\n}, 
[]);\n</code></pre>\n ’ 

After Codeblocks Removal 

’\nYou have to convert the response to json Please Look at this 
link with await await response.json();\nand then use 

setState.\n\nuseEffect(() => { \n console.log("useEffect TopTen 

has been called!"); \n const fetchdata = async () => {\n const 
response = await api.topTen(); // this calls axios(url)\n const 

responseData = await response.json();\n setLoading(false);\n 
setTopten(responseData.data); \n setError(responseData.error); 

\n };\n\n fetchdata (); \n}, []);\n\n ’  

 

The presence of HTML tags in the data is a significant 

concern that requires careful attention and removal during the 

preprocessing phase. The scraping process involved in 

collecting the data may inadvertently result in the inclusion of 

HTML tags within the textual content. By leveraging the 

distinctive pattern of HTML tags enclosed within angle 

brackets ("<" and ">"), the framework can readily identify and 

remove these tags. This step is essential to eliminate potential 

interference, improve data integrity, and enhance readability 

for subsequent text processing and analysis tasks as shown in 

Table III. 

TABLE III 

 COMPARISON OF HTML TAGS REMOVAL 

Before HTML Tags Removal 

’\n<p>You have to convert the response to json <a 

href="https://google.com">Please Look at this link</a> 
withawait <a href="https://google.com">await</a> 

response.json();\nand then use setState.</p>\n\n<preclass="lang-

js s-code-block"><code class="hljslanguage-javascript"><span 
class="hljs-titlefunction_">useEffect</span>(<span class="hljs-

function">()=&gt;</span> { \n <span class="hljs-
variablelanguage_">console</span>.<span class="hljs-

titlefunction_">log</span>(<span class="hljs-

string">"useEffectTopTen has been called!"</span>); \n 
<spanclass="hljs-keyword">const</span> <span class="hljs-

titlefunction_">fetchdata</span> = <spanclass="hljs-
keyword">async</span> (<spanclass="hljs-params"></span>) 

=&gt; {\n <spanclass="hljs-keyword">const</span> response = 

<spanclass="hljs-keyword">await</span> api.<span class="hljs-
titlefunction_">topTen</span>(); <span class="hljs-

comment">//this calls axios(url)</span>\n <spanclass="hljs-
keyword">const</span> responseData = <spanclass="hljs-

keyword">await</span> response.<span83class="hljs-title 
function_">json</span>();\n <spanclass="hljs-title 

function_">setLoading</span>(<spanclass="hljs-

literal">false</span>);\n <span class="hljs-
titlefunction_">setTopten</span>(responseData.<spanclass="hlj

s-property">data</span>); \n <span class="hljs-
titlefunction_">setError</span>(responseData.<span 

class="hljs-property">error</span>); \n };\n\n fetchdata (); 

\n}, []);\n</code></pre>\n ’ 

After HTML Tags Removal 

You have to convert the response to json Please Look at this link 

with await await response.json();\nand then use setState.\n\n 

useEffect(() => { \n console.log("useEffect TopTen has been 
called!"); \n const fetchdata = async () => {\n const response = 

await api.topTen(); // this calls axios(url)\n const responseData = 
await response.json();\n setLoading(false);\n 

setTopten(responseData.data); \n setError(responseData.error); 

\n };\n\n fetchdata (); 
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The subsequent step entails identifying technology-related 

stop words to facilitate the removal of these words from the 

data. Stop words are commonly occurring words that do not 

hold significant importance for the analysis and are frequently 

used in the text. 

Traditionally, the process of finding stop words has been a 

laborious task involving the utilization of manually curated 

stop word lists [17]. These lists can be sourced from various 

origins, such as domain-specific or language-specific stop 

word lists. However, in the case of our study, which focuses 

on the software engineering domain, conventional stop word 

lists need to be revised as they need more specificity to this 

domain. Consequently, employing such general stop word 

lists could introduce noise into the dataset. 

To address this challenge, [18] has significantly 

contributed by curating a stop word list explicitly tailored to 

the software engineering domain. Their approach involved 

thorough analysis of data extracted from patent documents, 

which predominantly describe domains related to software 

engineering. Notably, they employed a range of techniques, 

including preprocessing methods, a ranking framework based 

on term statistics, and an evaluation conducted by domain 

experts on a term-by-term basis. The meticulously curated 

stopword list developed by [18] is utilized in this study, 

ensuring its relevance and suitability for our specific research 

objectives. 

It is essential to acknowledge that alternative methods exist 

for deriving stop word lists, such as employing word clouds 

to identify the most frequent words in the data and 

subsequently removing them. However, such approaches may 

need more precision as they do not consider the contextual 

nuances of the data or the significance of individual words 

within the dataset. Therefore, the comprehensive approach 

proposed by [18] emerges as a more effective solution, 

incorporating domain-specific considerations and expert 

evaluation to curate the appropriate stopword list for the 

software engineering domain. Table IV shows a sample of the 

stop words list curated by the paper. 

TABLE IV 

A SAMPLE OF STOP WORDS LIST CURATED BY [13] 

able above- mentioned accordingly across 
along already alternatively always among 

and/or anything anywhere better disclosure 

 

In the field of NLP, text normalization techniques such as 

lemmatization are employed to prepare sentences, words, and 

documents for analysis. These techniques aim to reduce words 

to their root or base form. For example, the terms "kick" and 

"kicked" both stem from the verb "to kick," and it is desirable 

for a NLP application to recognize this relationship.  

3) Inferencing 

To improve the effectiveness of information retrieval 

systems, we propose a hybrid scoring mechanism that 

incorporates TF-IDF (1), time relevance (2), and vote count 

(3). The goal is to rank titles based on their relevance to a 

given query while considering both textual similarity and 

temporal proximity. 

The mechanism begins by utilizing the TF-IDF method, a 

statistical measure that evaluates how relevant a word is to a 

document in a collection of documents. In addition to the TF-

IDF score, the mechanism incorporates the time relevance of 

each title. The created date of each title is compared to the 

current time, and a time difference score is calculated. This 

score represents the temporal proximity of the title to the 

present moment. The closer the created date is to the current 

time, the higher the time score assigned to the title. 

The formula for TF-IDF Score is as follows: 

 wij = tfij x log(N/dfi) (1) 

where 

tfij : number of occurrences of i in  

dfi  :number of documents containing i  

N = total number of documents 

The formula for Time Score is as follows: 

 Time Score = 100 – (r-n/t) *100 (2) 

where 

r: current time 

n: created date 

t: max time difference 

 

Furthermore, the mechanism considers the vote count of 

each title as an indicator of its popularity or relevance. The 

vote count is transformed into a vote count score, considering 

the minimum and maximum vote counts in the dataset. The 

score is calculated as a percentage of the vote count's position 

within the vote count range, ensuring that higher vote counts 

receive higher scores. 

The formula for Vote Count Score is as follows: 

 Vote Count Score = 100 – (n  – s / y – s) x 100 (3) 

where n is created date, y is vote count, and s is min vote count. 

To achieve a balanced ranking, weightages are assigned to 

each score component. In our approach, the TF-IDF matching 

score carries a weightage of 80%, reflecting its primary 

importance in capturing textual similarity. The time and vote 

count scores contribute with weightages of 10% each, 

acknowledging their relevance but to a lesser degree than 

textual similarity. It is observable based on our experimental 

session, where the ratio of 80:10:10 is the best setting we’ve 

settled in. 

The formula to Calculate the Weighted Score is as follows: 

Weighted Score = (w*s) + (x*Time Score)+(z*Vote 
Count Score) 

(4) 

where s is min vote count, w is TF-IDF weightage, x is time 

weightage, and z is vote weightage. 

The final weighted score for each title is obtained by 

combining the TD-IDF matching score, time score, and vote 

count score according to their respective weightages. The 

mechanism sorts the titles based on the weighted scores in 

descending order, ensuring that titles with higher overall 

scores are ranked higher in the retrieval results. 

Sentiment analysis, also known as opinion mining, is a 

crucial process in determining the sentiment or attitude 

expressed in a piece of writing, whether positive, negative, or 

neutral. In the context of our framework, sentiment analysis 

plays a pivotal role in enhancing the ranking of posts. Upon 

scoring the posts using the sentence scoring method and 

assessing their relevance, it becomes apparent that the scores 

alone may not offer sufficient information to judge the 

usefulness of a post. To overcome this limitation, sentiment 
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analysis is introduced as an additional factor in the ranking 

process. 

By conducting sentiment analysis, the assumption is made 

that posts with a positive sentiment are more likely to be 

useful than those with a negative sentiment. This assumption 

allows for incorporating sentiment analysis as an additional 

layer of filtering within the ranking aspect of the framework. 

Initially, the Twitter RoBERTa base sentiment analysis model 

is employed, given its popularity with over 2 million 

applications this month. This model is based on RoBERTa, a 

widely utilized transformer-based model, and has been trained 

on an extensive dataset encompassing approximately 124 

million tweets from January 2018 to December 2021. 

However, subsequent research revealed a superior alternative. 

In the latest study, the Senti4SD [27] model was utilized, 

surpassing the performance of the Twitter RoBERTa base 

sentiment analysis model significantly. Senti4SD is an 

emotion polarity classifier for sentiment analysis in 

developers' communication channels. This model was trained 

and evaluated using a gold standard dataset comprising over 

4,000 posts extracted from Stack Overflow. It is a Collab 

Emotion Mining Toolkit (EMTk) component, catering to 

sentiment analysis requirements in software development 

contexts. The Senti4SD model demonstrates remarkable 

performance by accurately predicting sentiment and 

providing probability scores for three sentiment classes: 

positive, negative, and neutral. Leveraging the capabilities of 

this model allows for the determination of sentiment 

expressed in each text, with corresponding probability scores 

assigned to each sentiment class. Training on a domain-

specific dataset from Stack Overflow enhances its 

effectiveness in capturing sentiments prevalent in developers' 

communication channels. 

Incorporating the Senti4SD model into the framework 

elevates the accuracy and reliability of the sentiment analysis 

process. A comprehensive understanding of the posts' 

usefulness and relevance is obtained by considering the 

sentiment expressed in each post alongside the sentence 

scores. This refined approach enables a more precise ranking 

of the posts within the framework, facilitating improved 

decision-making based on sentiment analysis. 

As the framework reaches the final stage of the pipeline, it 

aims to enhance the user experience by providing a summary 

of the top 5 ranked posts. Summarization involves condensing 

a text document to create a concise summary that captures the 

critical points of the original document. The goal of 

summarization is to reduce the length of the text while 

preserving the most essential information. In our framework, 

summarization is critical as it enables users to comprehend the 

posts more efficiently, quickly, and effortlessly. By 

generating summaries of the top 5 sentiment-ranked posts, we 

aim to facilitate a better understanding of the content and 

enable users to grasp the essential information more easily.  

The chosen model for summarization is the widely used 

Bidirectional and Autoregressive Transformer (BART) large 

CNN model [28], which has been utilized more than 1 million 

times this month. BART is a transformer-based encoder-

decoder model that combines bidirectional encoding (similar 

to BERT) and autoregressive decoding (similar to GPT). It 

has been pretrained on English language data and fine-tuned 

on the CNN Daily Mail dataset. To enhance the performance 

of the BART model for our specific use case, we have 

conducted fine-tuning using the SOSum dataset [29]. This 

dataset consists of extractive summaries from 2,278 Stack 

Overflow posts related to 506 of the most popular Stack 

Overflow questions. This fine-tuning aims to tailor the BART 

model to understand better and generate summaries specifically 

for Stack Overflow posts. In the final section of this paper, we 

will present and discuss the results of the fine-tuned BART 

model and compare its performance to the base model. This 

analysis will demonstrate how the fine-tuned model 

outperforms the original model, highlighting its effectiveness 

in generating more accurate and informative summaries. 

III. RESULTS AND DISCUSSION 

We conduct both quantitative experiments and user studies. 

This section will describe the outcome of our experiments and 

user studies. 

A. Datasets Descriptions 

It is important to note that all the selected datasets are closely 

related to software engineering domains or at least have the 

exact nature of technicality in online forums. The dataset used 

to evaluate the question-matching methods is the Quora 

questions pair dataset because it provides pairs of questions, i.e., 

it contains two questions with the same meaning. The ground 

truth is the set of labels supplied by human experts. To evaluate 

the Sentiment Analysis model, the dataset chosen was the gold 

standard Stackoverflow dataset [30]; the data are directly 

scraped from Stack Overflow, thus making perfect sense to our 

research work. Lastly, the summarization evaluation datasets 

are from SOSum [29]. This dataset consists of extractive 

summaries from 2,278 Stack Overflow posts related to 506 of 

the most popular Stack Overflow questions. 

B. Evaluation  

1) Question matching models: 

Four different methods are tested: fuzzy wuzzy partial ratio, 

fuzzy wuzzy token sort, spacy similarity, and the roberta-large-

mnli model. The four methods are evaluated using the Quora 

questions pair dataset, confusion matrices, F1, recall, and 

precision scores, which are noted down to perform further 

analysis as in Table V.  

TABLE V 

QUESTION MATCHING MODELS EVALUATION METRICS 

Models Precision Recall F1 

Fuzzy wuzzy partial ratio 30.03% 52.61% 38.23% 
Fuzzy wuzzy token sort 29.10% 56.12% 38.33% 

Spacy Similarity 96.35% 40.24% 56.77% 

roberta-large-mnli-entailment  76.70% 66.63% 71.31% 

 

The roberta-large-mnli-entailment model shows us that 

including entailment is crucial in understanding semantic 

meaning of the sentences when comparing the similarity 

between two sentences, therefore this model is chosen as our 

framework. 

2) Sentiment analysis models: 

The RoBERTa model and Senti4SD model are both tested. 

Similarly, confusion matrices, F1, recall, and precision scores 

are detailed in Table VI. Senti4SD is the better choice for our 
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use case, as the model is trained explicitly on Stackoverflow’s 

data. 

TABLE VI 

SENTIMENT ANALYSIS MODELS EVALUATION METRICS 

Models Precision Recall F1 

Roberta 68% 69% 68% 

Senti4SD 60% 100% 84% 

3) Summarization models  

As part of our research work, this paper fine-tunes a base 

BART model with the SOSum [29] datasets to improve its 

accuracy further. Both models are evaluated with the SOSum 

model. It is important to note that the datasets used to fine-

tune the BART model are split into training and evaluation 

datasets, whereby the training data is fed into the model while 

fine-tuning, and the evaluation datasets are treated as unseen 

data. 

Three evaluation methods in ROUGE are used in our 

evaluation process. Rouge-1 evaluates individual words, 

Rouge-2 assesses word pairs, and Rouge-L considers overall 

structure and content overlap. Using a combination of metrics 

provides a comprehensive evaluation. The suitability of each 

metric varies based on specific evaluation needs. Rouge-1 is 

helpful for keyword accuracy, Rouge-2 focuses on cohesion 

and fluency, and Rouge-L allows word order and sentence 

structure flexibility. By considering multiple metrics, a 

broader range of summary qualities can be assessed, offering 

a more holistic view of system performance. Ultimately, the 

choice should align with the goals and requirements of the 

summarization task. Approaching a near 60% accuracy in 

abstractive summarization is reasonable based on state-of-the-

art evaluated models [31]. Table VII(A-C) shows the 

performance results of respective ROUGE. 

TABLE VII (A) 

SUMMARIZATION MODELS EVALUATION METRICS - ROUGE-1 

Models Precision Recall F1 

Base BART 22.40% 83.24% 34.43% 
Fine-tuned BART 46.01% 75.36% 53.47% 

TABLE VII (B) 

SUMMARIZATION MODELS EVALUATION METRICS - ROUGE-2 

Models Precision Recall F1 

Base BART 14.70 70.95% 23.69% 

Fine-tuned BART 40.32% 69.85% 47.12% 

TABLE VII (C) 

SUMMARIZATION MODELS EVALUATION METRICS - ROUGE-L 

Models Precision Recall F1 

Base BART 21.88% 81.41% 33.64% 

Fine-tuned BART 45.72% 74.96% 53.16% 

4) Verdict by human evaluation 

Apart from individual model evaluations, the paper 

combines all models and ultimately proposes a framework to 

help developers filter, analyze, and summarize online forums. 

10 pairs of questions and answers denote generating 10 

queries and feeding to the model to infer the best Stack 

Overflow posts. The experiment is set up whereby the original 

post and the summarized content are presented to the testers. 

10 undergraduate students with a computer science 

background are then picked from our institution to perform 

human evaluations. A question sheet will then be presented to 

each tester alongside 10 questions and answers generated by 

the proposed framework. The question sheet contains 3 

checkboxes: relevancy, preferred ranking, and preferred 

summarization. Relevancy indicates if the answers are 

relevant to the query, and preferred ranking indicates if the 

sorting of the questions and answer pairs is correct. Lastly, 

preferred summarization indicates if the summarization 

outputs are beneficial in understanding the content of the 

answers. The results are shown in Table VIII. 

TABLE VIII 

HUMAN EVALUATION METRICS ON THE OVERALL PROPOSED FRAMEWORK 

Question Relevancy 
Preferred 

Ranking 

Preferred 

Summarization 

1 100% 60% 50% 

2 100% 70% 10% 
3 100% 60% 40% 

4 100% 80% 10% 
5 100% 50% 30% 

6 100% 50% 50% 

7 100% 40% 50% 
8 100% 80% 20% 

9 100% 50% 40% 
10 100% 60% 50% 

Averaged: 100% 60% 35% 

IV. CONCLUSION 

This paper presents an Automated Frequently Asked 

Question Generation and Retrieval framework specifically 

tailored for the software engineering domain. The framework 

addresses the challenges software engineers face when 

seeking solutions on open forums like Stack Overflow. The 

proposed framework achieves promising results by 

integrating state-of-the-art models from domains such as 

string matching, sentiment analysis, and summarization, with 

F1 scores of 71.31%, 74.90%, and 53.4%, respectively. A user 

study involving 10 participants was conducted to evaluate the 

framework, with assessments on relevancy, preferred ranking, 

and preferred summarization. The results indicate high 

relevance scores (100%) while ranking and summarization 

obtained average scores of 60% and 35%, respectively. 

Thorough evaluations have been conducted on each 

individual component, confirming their viability within our 

framework. The fine-tuned BART model has demonstrated 

superior performance compared to the baseline model, 

achieving a higher score. However, integrating these 

components into a combined framework has further enhanced 

the overall results. Future work includes improving 

summarization models by incorporating text classification 

and summarizing them individually [32], as well as proposing 

feedback loop systems based on human reinforcement 

learning. Furthermore, efforts will be made to optimize the 

framework by utilizing knowledge graphs for dimension 

reduction, enabling it to handle larger corpora effectively.  
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