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Abstract— Many applications, including airplane design, wind turbines, and heat transmission, use symmetric or asymmetric airfoils. 

Engineers employ these airfoil shapes to optimize performance and efficiency. Each airfoil has a unique set of aerodynamic coefficients 

that must be calculated to maximize the airfoil design. Engineers utilize numerous ways to calculate coefficients, such as lift and drag. 

One of the methods is the prediction method, which effectively reduces time and cost. This study's training dataset is obtained from 

particle-based numerical computation using the Lattice Boltzmann Method (LBM). Then, Convolutional Neural Networks (CNN) are 

used as a prediction method to get the aerodynamic coefficients of airfoils for lift and drag based on two different Reynolds numbers. 

In CNN, airfoil geometry representation is essential. The Signed Distance Function (SDF) was used to convert airfoil geometry into 

RGB pictures. On the other hand, the SDF method cannot explain different flow conditions; in this case, it is represented by the 

Reynolds number (Re). Therefore, we propose a Text-based Watermarking Method (TWM) to differentiate between Re = 500 and Re 

= 1000. Each airfoil representation was trained and tested to generate each prediction model using a modified LeNet-5. The computation 

results show that using CNN with TWM on SDF to define the Reynolds numbers could predict the lift and drag coefficients with varying 

angles of attack. Future research can focus on generalizations to different aerodynamic aspects and practical applications in complex 

scenarios. 
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I. INTRODUCTION

The human desire to fly has been around for a long time. 

The phenomenon of natural flight by birds or bees inspires 

this desire [1]–[3]. These articles explain the aspects needed 
to mimic that flight motion, but there is not much explanation 

related to aerodynamic analysis. This analysis requires 

conditions at ultra-low Reynolds (Re) numbers [4], thus 

making this study attract a lot of attention among researchers 

[5]. In recent years, there has been notable interest in ultra-

low Reynolds number aerodynamics, primarily driven by the 

increased prevalence of micro-aerial vehicles operating at low 

speeds. 

Using an experimental or numerical computation approach, 

we can gain knowledge of aerodynamic characteristics at 

ultra-low Re. From the testing, the analysis is more difficult 

when using air media, so the medium used is water. Although 

this approach is possible, it becomes difficult to apply in an 

experimental setup if Re is much lower than 7000 [6]. 

For this reason, many researchers use a numerical 

computational approach in flow analysis at ultra-low Re. 

Papers [7]–[9] compute flow simulation intensively for airfoil 

NACA 0012 at Re = 1000 by varying the angle of attack. 

Besides, Suzuki et al. [10] simulate wing flapping using the 

lattice Boltzmann method (LBM) at Re = 100. Many 
applications can be applied through this LBM [11], including 

the fluid flow around the airfoil at ultra-low Re and the 

calculation of aerodynamic coefficients such as the 

coefficients of lift ( �� ) and drag ( �� ) [12]–[14]. The

attractiveness of LBM in simulating fluid flows lies in the 

benefits of numerical computation compared to other CFD 

methods, such as easy-to-follow algorithms, efficient 

implementation of parallel computations, handling of 

complex geometries, and so on [15]. 
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Apart from the advantages of LBM, not all experts can 

apply LBM to obtain aerodynamic coefficient datasets. Then, 

the idea emerges to create a model that can predict the value 

of ��  and ��  when a user gives information about airfoil 

geometry, angle of attack, and Re, so that the user does not 

have to deal directly with the LBM. A data-driven 

mmodeling(DDM) approach is needed to support the idea. 

DDM is a data analysis process that finds the relationship 

between input (airfoil geometry, angle of attack, and Re) and 

output (��  and �� ) [16]. An article [17] utilizes DDM to 

obtain the required airfoil geometry through the conditional 

variational autoencoder (CVAE). Another DDM approach in 

[18] is predicting the airfoil surface pressure distribution 

through a convolutional neural network (CNN). CNN requires 

images as input data [19] and has the advantage of 

automatically recognising patterns from images without 

human supervision [20]. CNN has many architectures that can 

map between image features with regressions or 

classifications. One of the well-known CNN architectures in 
digital recognition is LeNet-5 [21]. LeNet-5 requires few 

parameters but performs well during model training [22]. 

LeNet-5 was initially used for classification, but this 

architecture can be modified to predict aerodynamic 

coefficients. In article [23], ��, �� , and pitch moment (��) 

were obtained using XFOIL. The airfoil geometries were 

converted into images through the Signed Distance Field 

(SDF) method, and then the modified LeNet-5 was used to 

predict the aerodynamic coefficient. LeNet-5 was also used to 

predict �� in [24]. The �� datasets were also obtained using 
XFOIL, while the airfoil geometries were converted into 

grayscale images. Mach (Ma) and Re number were injected in 

the first fully connected (FC) layer. Although not only for 

airfoils, article [25] utilized the modified LeNet-5 to predict ��  with arbitrary geometries, including airfoils. The 

geometries were converted into grayscale images. The �� 

datasets were obtained using the RANS method. ��, ��, and �� were also predicted in [26] using the modified LeNet-5 

and composite technique to generate airfoil images. 

This article uses LBM to collect ��  and ��  datasets for 

conditions Re = 500 and Re = 1000. Re = 1000 is primarily 

used to validate the results of fluid flow simulations with 

LBM and can also be compared with the findings of previous 

studies. Re = 500 is employed to test the capabilities of the 

CNN model trained under different Reynolds number 

conditions. The SDF method converts the airfoil geometries 

into images [27]. We introduce the Text-based Watermarking 

Method on SDF (TWM+SDF), a new and fast technique to 

define different flow conditions. This technique does not 

require complex calculations, making it expected to be easily 
followed by other researchers. Next, we modify LeNet-5 by 

varying the depth of the convolution layers, the activation 

function between ReLU and Leaky ReLU, and the Adam 

optimizer’s learning rate (LR). 

II. MATERIALS AND METHOD  

As shown in Fig. 1, the procedures involved in developing 

a predictive model of the aerodynamic coefficient of an airfoil 
include airfoil processing, data transformation, and the 

creation of the trained model. 

 
Fig. 1  Predictive model development flowchart 

A. Airfoil Data Processing 

The first stage in processing airfoil data for predictive 

modeling is determining the form or geometry of the airfoil. 

Coordinates define the top and bottom surfaces of an airfoil. 

The airfoil coordinates are generated using Non-Uniform 

Rational B-Splines (NURBS) [28] with 12 control points, as 

shown in Fig. 2a. We develop 110 airfoils by linearly varying 

control points at the upper and lower surfaces, as shown in 
Fig. 2b. Then, all airfoils are converted into digital images, 

making it easy to implement with CNN [29]. 

 

 
(a) Airfoil NURBS with 12 control points 

 

 

(b) Linear variations on control points 

      Fig. 2  The process of producing various airfoils 

 

Airfoil images can be created in the form of single [24]–

[26] or three [18], [23] channels using a Signed Distance Field 

(SDF) [30]. This paper uses the SDF method to create airfoil 

images. We use TWM on SDF to encounter different 

Reynolds numbers, as illustrated in Fig. 3. The database stores 
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the SDF pictures as well as the aerodynamic coefficients of 

the airfoil. 

Fig. 3  Text-based watermarking methods on SDF 

B. Lattice Boltzmann Method 

As our CFD solver, the LBM has many great features in 

fluid simulation among the many numerical methods in the 

CFD fields. For ultra-low Reynolds numbers, the 

aerodynamic coefficient of airfoils can be computed using 

LBM [12]. At a microscopic level, the particles of a fluid live 

on a lattice. This paper uses a two-dimensional lattice with 

nine possible velocities at each lattice (D2Q9), as described 

in Fig. 4. 
 

 
Fig. 4  The two-dimensional scheme for particles in the lattice 

 

The microscopic particles that build up fluid can be 

explained by the distribution function ��, which describes the 

phase-space density at a particular location and velocity. The 

particles will undergo two processes: stream and collide. 

The BGK [31] approximation can capture that behavior 

using the discretized equation below : 

 ����� 	 
�∆�, � 	 ∆�� � ����� , �� � � �����,����������,���   (1) 

where � denotes nine lattice directions, � is the timescale of 

collisions, and the distribution function � tends towards some 

equilibrium state ���. 
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The calculation of the macro variables, such as density and 

velocity, can be obtained using the following equation: 

� � 9 �� 
�" � 9 ��
� 

(3) 

The formula used to calculate the lift and drag coefficient 
can be shown below: 

�� � :;0.5 � = >$ 

�� � :�0.5 � = >$ 

(4) 

where c is the chord of an airfoil, U is the velocity in lattice 

units, and 

 :�|; � ∑ 
����A, �� 	 ���, ���  (5) 

where A is the node in the solid and w is the node of the fluid 

adjacent to s. 
The calculation process using LBM can be shown in the 

following Fig. 5. The simulation stop criteria are based on the 

total number of iterations used. 

 

 
Fig. 5  Calculation process used in LBM 

  
(a) aerofoil 5000, Re=500 (b) aerofoil 5000, Re=1000 
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C. CNN Architecture 

CNN has been widely utilized in image recognition and 

was first introduced in document recognition for gradient-

based learning [32]. CNN is an excellent architecture for 

implementing image data [33]. As input data, CNN uses 

pictures with one or three channels. The data is subsequently 

forwarded to the convolution, pooling, and fully connected 

layers. 

 

 
Fig. 6  LeNet-5 architecture with modification 

 

As shown in Fig. 6, we employ LeNet-5 as a CNN 

architecture with certain modifications. As the first input data, 

the airfoil image has a size of 78 × 78. CNN's major 

component is the two-dimensional convolutional (Conv) 

layer. Conv layer 1 has a kernel size of 9 x 9, three input 

channels, and one step size in each direction. We employ a 
batch norm to make training faster and more stable. Because  

it produces better results, the activation function utilized is a 

rectified linear unit (ReLU) [34]. 

In some cases, ReLU activation may experience a 

Vanishing Gradient during training. Therefore, another 

activation used is Leaky ReLU [35] as a comparison. After 

the ReLU operation in Fig. 6, we set 32 channels with a 

resolution of 16 × 16 after the MaxPool process based on Eq. 

6 for the Conv layer 2. We can get output resolution (o) with 

i as input,  p as padding, k as kernel, and s as stride (step) size. 

 + � 7�B$C�DE 8 	 1 (6) 

The same process is used for the other Conv layers. For the 

first fully connected (FC) layer, the last Conv layer will have 

64 × 8 × 8. This architecture's output layer is linear regression, 

with MSE (Mean Square Error) in Eq. 7 as a loss function. 

 

 FGH � ∑ IJ∑ Kŷ�MN�OPQRS�TU VQRS WXEEYZ/   (7) 

The output layer is used to predict the coefficient of lift and 

drag. where [�  and ŷ� are the ��\  LBM and predicted 

aerodynamic coefficients, respectively; ]"^ is the number of 

coefficients to be expected; and s is the group size. 

D. Model Training 

The model training procedure is divided into two stages: 

forward and backward computations. The first phase extracts 

picture patterns using convolutional and pooling algorithms 
and passes them into the FC layer. The projected aerodynamic 

coefficient may then be obtained using the output layer. The 

disparities between actual and expected values are referred to 

as prediction errors. Finally, the algorithms feed these 

mistakes back into the network, adjusting its weights and 

biases. The amount of Conv, pooling, and FC layers is 

adjustable based on the input images. If the end condition is 

not met, the forward and backward computation steps are 

repeated. The total number of epochs is the stopping condition 

for CNN training. Fig. 7 depicts the training approach for 

obtaining the prediction model. 

 

Fig. 7  Model training procedure 

 

The training approach in this study employs adaptive 
moment estimation (Adam). Adam uses a portion of the 

training dataset to minimize the loss function. The number of 

epochs is the amount of time required to run the learning 

algorithm through the full training dataset. 

III. RESULTS AND DISCUSSION 

A. Simulation Using LBM 

The flow simulation process around the airfoil using LBM 

is carried out for 30000 iterations for each airfoil. The 
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variation of the angle of attack starts from 0° to 29°. In this 

study, we use two variations of the Reynolds number: Re = 

500 and Re = 1000. The simulation domain can be shown in 

the following Fig. 8. 
 

 
Fig. 8  Simulation domain configuration 

Each side of the domain is assigned a boundary condition. 

In our study, the boundary conditions used for the upper and 

lower sides are periodic. With this condition, the distribution 

function (��) coming out of the top side will be the same as the 

distribution function (��) coming in from the bottom. The left 
side of the domain has a boundary condition in the form of a 

specified initial velocity profile. In contrast, the right side 

satisfies the Neumann boundary condition so that the 

distribution function �� of the right side of the domain is the 

same as the left side of its neighbors. The bounceback 

boundary condition is used on the airfoil. 

As shown in Fig. 9, the simulation results are carried out at 

Re  = 500 and Re  = 1000 for NACA 0012. The variation of 

the angle of attack is 30, ranging from 0°  to 29°, with the step 
increment being 1°.  

 

  
(a) α = 0 (b) α = 0° 

  
(c) α = 15° (d) α = 15° 

  
(e) α = 29° (f) α = 29° 

Fig. 9  Flow simulation around the airfoil at _` = 500 and _` = 1000 
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The �� and �� are calculated every 100 iterations of 50000 

using Eq. 4. In Fig. 10, The time history in the lattice unit of 

the coefficient lift and drag is compared to different angles of 

attack during the simulation. For NACA 0012 with a = 15°, �� is more stable, starting at 10000 iterations. As for a = 29°, �� fluctuates due to irregular flow behind the airfoil, as shown 

in Fig. 9f.  
 

 
(a) The time history of the coefficient lift 

 

 
(b) The time history of the coefficient drag 

Fig. 10  The comparison of the coefficient lift and drag on different angles of 

attacks during iteration. 

 
(a) �� against a at bc = 1000 

 

 
(b) �� against a at bc = 1000 

Fig. 11 The comparison of �� and �� values at bc = 1000 

To validate the simulation results, we compared the results 

of the calculation of the average aerodynamic coefficient in 

the LBM with the results carried out by Kurtulus et al. [9] and 

plotted them in Fig. 11. In general, there are similarities 

between the numerical solutions from Kurtulus et al. and the 

current study, as shown in Fig. 11a. At about a = 26°, the 

value of �� has decreased; a separate fluid flow could cause 

this. At a = 0° to a = 6°, the value of �� changes minimally.  

From a = 8°, the value of �� starts to increase due to the 

vortex shedding behind the airfoil. The calculation result of �� can be plotted and shown in Fig. 11b. It turns out that the 

results between them are acceptable. Based on these results, 

simulations with LBM can be applied to 110 airfoils using 

NURBS. Simulations are performed at Re = 500 and Re = 

1000. 

B. Prediction Using CNN 

We gather 110 airfoils and have a total of 6600 datasets. 

The datasets are separated into 80% for training and 20% for 

validation and comprise airfoil pictures as input and airfoil 

coefficients as labels. These are both used to transform data. 

The geometry representations and airfoil coefficients are then 

standardized with a mean (μ) of 0.5 and a standard deviation 

(σ) of 0.5 for all airfoil pictures. 

Fig. 12 shows the training history for ReLU and leaky-

ReLU activation functions. The MSE curves for the training 

datasets drop faster; then, the MSE remains constant around 

1000 epochs. On the other hand, the MSE curves for 
validation decrease more quickly until about 100 epochs. 

Both ReLU and Leaky-ReLU perform very well in this case. 

So, airfoil images using SDF have a good result in the training 

process. 
 

 
Fig. 12  The training and validation history 

 
(a)  Training history 
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(b) Validation history 

Fig. 13  Comparison of training and validation with different learning rates 

 

 
(a) de for NACA 6412 

 
b) df for NACA 6412 

 
(c) de for NACA 0018 

 
(d) df for NACA 0018 

Fig. 14 Aerodynamic coefficient prediction for two different Reynolds 

number  

 

Because the SDF can perform very well during training, we 

vary the learning rate �g,� to 10−3, 10−4, and 10−5 with the 

same ReLU activation function. Based on Fig. 13, loss 

fluctuations in the training and validation stages, g, = 10−5, 

have the slightest MSE fluctuation among the other g, values. 

So, we focus on g, = 10−5 and the ReLU activation function 

for our training model. 

To evaluate model performance, the trained model 

calculates the aerodynamic coefficients for the unknown 

airfoil during training. The NACA 6412 compares the actual 

lift and drag coefficients from the preceding section to the 

predicted findings. From Fig. 14, the model can perform 

prediction very well on NACA 6412 and NACA 0018 for �� 
and ��  both at bc  = 500 and bc  = 1000. Differences in 

prediction results can occur, especially at large angles of 
attack. These differences may be caused by Cl and Cd value 

fluctuations, as shown in Fig. 10. However, using TWM on 

SDF, this model still performs very well for different 

Reynolds numbers. 

The CNN model performance using TWM on SDF as an 

airfoil geometry representation can be quantified using Root 

Mean Squared Error (RMSE) and R-squared (,$). Both are 

evaluation metrics for regression purposes, as they measure 

how close the predicted values are to the actual values, as 

previously utilized in prior studies [23]–[27].  

Based on Table 1, TWM+SDF at bc = 500 has a better 

metric than bc = 1000 for both ��  and �� . In addition, the 

RMSE value of �� is smaller than that of ��. However, this is 

still within the acceptable range by comparing the general 

results from ref. [23] and [26].  

TABLE I 

THE METRIC MEASUREMENT RESULTS 

TWM+SDF RMSE r2 

Cl Cd Cl Cd 

NACA 6412 
(Re = 500) 

0.0265 0.0103 0.9978 0.9973 

NACA 6412 
(Re = 1000) 

0.0367 0.0118 0.9971 0.9979 

NACA 0018 
(Re = 500) 

0.0231 0.0095 0.9964 0.9972 

NACA 0018 
(Re = 1000) 

0.0404 0.0164 0.9867 0.9950 
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Regarding the r2 metric, as illustrated in Fig. 15, the 

TWM+SDF at Re = 500 has a higher score in predicting �� 
than at Re = 1000, which shows that the CNN model can better 

understand the variation of the overall prediction data. In 

contrast to the ��, the CNN model has a higher score for Re = 

1000. However, the CNN model has a high r2 score when 

predicting �� and �� for different Reynolds numbers. 

 

    
(a) de for NACA 6412  

Re = 500 

(b) df for NACA 6412  

Re = 500 

(c) de for NACA 6412  

Re = 1000 

(d) df for NACA 6412  

Re = 1000 

    
(e) de for NACA 0018  

Re = 500 

(f) df for NACA 0018  

Re = 500 

(g) de for NACA 0018  

Re = 1000 

(h) df for NACA 0018  

Re = 1000 

Fig. 15  The r2 metric for various prediction results 

 

IV. CONCLUSION 

The previous section utilized LBM to simulate fluid flow 

around the airfoil at ultra-low Reynolds numbers. The results 

demonstrated excellent performance compared to previous 
studies. LBM has the potential to conduct fluid flow 

simulations due to its simpler computational algorithms, easy 

and efficient implementation for parallel computing, and 

easier handling of complex geometries. LBM is open source, 

allowing for its development for other research purposes. 

In addition to the aerodynamic coefficients obtained using 

LBM for different Reynolds numbers, airfoil geometries with 

TWM+SDF are also utilized as datasets. These datasets were 

trained using CNN with the LeNet-5 architecture to predict 

airfoil lift and drag coefficients. Predictive performance is 

measured by metrics and using TWM+SDF can yield good 
prediction results for various Reynolds Numbers. Both RMSE 

and R-squared metrics provide equally satisfactory results. 

This positive prediction outcome will create new 

opportunities for researchers or other communities to collect 

more training data at different Reynolds numbers for airfoil 

design. However, it's important to note that this research is 

currently limited to 2D airfoil cases, and further investigations 

into more complex scenarios, such as aircraft wings, would be 

intriguing to pursue. 
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