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Abstract—High-dimensional data allows researchers to conduct comprehensive analyses. However, such data often exhibits 

characteristics like small sample sizes, class imbalance, and high complexity, posing challenges for classification. One approach 

employed to tackle high-dimensional data is feature selection. This study uses the Bacterial Foraging Optimization (BFO) algorithm 

for feature selection. A dedicated BFO Java library is developed to extend the capabilities of WEKA for feature selection purposes. 

Experimental results confirm the successful integration of BFO. The outcomes of BFO's feature selection are then compared against 

those of other evolutionary algorithms, namely Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Artificial Bee Colony 

(ABC), and Ant Colony Optimization (ACO).  Comparison of algorithms conducted using the same datasets.  The experimental results 

indicate that BFO effectively reduces features while maintaining consistent accuracy. In 4 out of 9 datasets, BFO outperforms other 

algorithms, showcasing superior processing time performance in 6 datasets. BFO is a favorable choice for selecting features in high-

dimensional datasets, providing consistent accuracy and effective processing. The optimal fraction of features in the Ovarian Cancer 

dataset signifies that the dataset retains a minimal number of selected attributes. Consequently, the learning process gains speed due to 

the reduced feature set. Remarkably, accuracy substantially increased, rising from 0.868 before feature selection to 0.886 after feature 

selection. The classification processing time has also been significantly shortened, completing the task in just 0.3 seconds, marking a 

remarkable improvement from the previous 56.8 seconds. 
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I. INTRODUCTION

The high dimensionality of data can be reduced through 

dimensionality reduction techniques. In machine learning and 
statistics, dimensionality reduction refers to reducing the 

number of variables according to specific criteria or finding a 

concise representation of high-dimensional data[1]. 

Dimensionality reduction can be categorized into two main 

types: feature selection and feature extraction [1]-[4]. Feature 

extraction aims to minimize the resources needed to represent 

extensive data. In contrast, feature selection combines search 

techniques to obtain a new subset of features, evaluated by an 

evaluation measure that assesses different feature subsets. 

Feature selection is a crucial preprocessing step for 

managing high-dimensional data to identify and retain 
influential features that impact classification results. This 

process reduces data dimensionality by removing irrelevant 

features, thus improving data effectiveness and accuracy [5], 

[6].  Feature selection can be categorized into two main 

approaches: filters and wrappers. Filters operate 

independently of the model by selecting variables based on 

general characteristics such as correlation with predicted 

variables. This method discards the least informative 

variables while retaining others for use in the classification or 

regression model. It is highly efficient in terms of 
computation time and resistant to overfitting. However, filter 

methods may include redundant variables as they overlook 

inter-variable relationships. Hence, they are commonly 

employed as preprocessing steps. On the other hand, wrappers 

assess subsets of potential variables based on the estimated 

accuracy of the target learning algorithm [7]. 

Feature extraction holds significant importance in machine 

learning endeavors. In their study, Guyon et al. [1]  provide a 

comprehensive analysis of various feature extraction 

methods, drawing from papers presented at the NIPS 2003 

workshop on feature extraction. Their work is a foundational 
reference for comprehending feature extraction techniques 
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and their real-world implementations. Additionally, Wang et 

al. [4] focus on feature selection techniques in their 

publication within the Encyclopedia of Machine Learning and 

Data Mining. They offer valuable insights into the diverse 

methods and approaches employed in feature selection. 

One of the methods of feature selection is Bacterial 

Foraging Optimization (BFO). BFO is an optimization 

algorithm that draws inspiration from the foraging behavior 

of bacteria. It has been employed in various domains, 

including image segmentation, power management, and 
parameter optimization. Kumar and Vishwakarma [8] 

propose a multi-level crop image segmentation method 

utilizing BFO and minimum cross entropy, demonstrating 

encouraging results in image segmentation.  Zhang et al. [9] 

concentrate on enhancing the performance of BFO by 

incorporating a multi-colony cooperation strategy, thereby 

improving the algorithm's optimization capabilities. 

Dubuisson et al. [10] utilize BFO for predictive control in a 

standalone microgrid, demonstrating its effectiveness in 

managing power systems. Subhashini et al. [11] utilize BFO 

to fine-tune parameters of an artificial neural network (ANN) 
through adaptive Harris Hawks weight optimization, resulting 

in enhanced performance of the ANN model. Meanwhile, 

Zhang et al. [12] propose a multi-objective BFO algorithm 

tailored for cognitive emergency communication networks, 

prioritizing optimizing practical areas as a pivotal aspect. 

Several researchers have improved BFO by modifying 

the steps of the BFO algorithm. These enhancements were 

diverse, from integrating Chaotic chemotaxis step length, 

Gaussian mutation, and chaotic local search into BFO as 

demonstrated in [13] and adopting a discrete approach for 

community detection in networks [14]. Furthermore, 
modifications such as incorporating adaptive chemotaxis 

processes and proposing new strategies for bacteria fitness 

assignment and selection were introduced in [15]. 

Similarly, improvements such as combining gravitational 

search and swarm diversity strategies were made [16]. 

Additionally, enhancements targeted specific applications, 

such as using BFO in robotic cells with sequence-

dependent setup times and multi-objective multi-echelon 

supply chain optimization problems. These adaptations 

were validated through rigorous testing on various 

benchmark problems and real-world scenarios. Moreover, 

efforts were made to refine BFO's exploration ability 
through chemotactic strategies based on Gaussian 

distribution and swarm diversity in reproduction strategies, 

as highlighted in [17]. Furthermore, BFO was combined 

with genetic algorithms in [18] to improve multi-objective 

optimization in multiple sequence alignment tasks. Lastly, 

advancements such as incorporating adaptive step lengths 

in chemotaxis were introduced in [19], yielding superior 

results to the original BFO algorithm. Another 

improvement of BFO is that a refined version of BFO, 

termed ChaoticBFO, integrates two chaotic strategies to 

strike a better balance between exploitation and 
exploration[20]. Validated across 23 numerical benchmark 

functions, this improvement was compared against ten 

competitive metaheuristic algorithms. In another stride 

forward, enriching individual diversity within BFO to prevent 

entrapment in local optima was proposed [21]. Additionally, 

the segmentation and adjustment of bacteria step sizes based 

on fitness values were introduced to accelerate convergence 

and enhance search capabilities. Furthermore, dynamic 

variations in search scope and chemotaxis steps were 

introduced, significantly accelerating convergence and 

improving search precision, showcasing high efficiency, rapid 

convergence, and a strong capability for global search [22]. 

Finally, an iterative process where a dimension-by-dimension 

update evaluation strategy combined updated values to form 

new solutions was adopted [23]. Experimental results 

illustrated the effectiveness of this strategy in improving 
convergence speed and solution quality within the BFO 

algorithm. 

In addition, BFO has been implemented in several case 

studies such as the following research endeavors: In [24], 

BFO was implemented in cellular manufacturing systems 

(CMS), and its performance was compared with other 

commonly used algorithms in the literature such as GA and 

K-Means. Furthermore, in [25], BFO was utilized to predict

protein structures, improving search quality by minimizing

the free energy level of overall structure with 17 proteins.

Additionally, BFO implementation in menu planning
problems was observed in [26], where a mathematical model

satisfying the nutritional needs of individuals while enforcing

the "Laws of Nutrition" was designed. A menu generator

software prototype was developed to create custom menus

with different characteristics for 15 users, yielding

satisfactory results from an expert's perspective.

This study employs the Bacterial Foraging Optimization 

(BFO) algorithm as an evolutionary technique to improve the 

Feature Selection process. The primary objective of 

incorporating this evolutionary algorithm is to boost the 

effectiveness of removing irrelevant features while 
simultaneously enhancing the speed and accuracy of 

information acquisition through the wrapper technique search 

method.  The BFO algorithm chosen for feature selection was 

then implemented by creating a Java library as one of the 

feature selection capabilities in WEKA tools[27]. WEKA is 

an open-source tool used for data analysis and machine 

learning. WEKA stands for "Waikato Environment for 

Knowledge Analysis," noting its origin at the University of 

Waikato in New Zealand, where the software was developed. 

WEKA offers various features and algorithms for data 

analysis and machine learning. It provides an intuitive 

interactive environment that allows users to run multiple data 
analysis experiments without writing code from scratch. One 

of WEKA's valuable capabilities is feature selection. In 

addition to the use of the Bacterial Foraging Optimization 

(BFO) algorithm for feature reduction across different open 

datasets, this study also evaluates how BFO performs in 

comparison to four other widely recognized feature selection 

methods: Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO), Artificial Bee Colony (ABC), and Ant 

Colony Optimization (ACO). 

II. MATERIALS AND METHOD

In this section, we delve into the system design, the 

operation of the Bacterial Foraging Optimization (BFO) 

algorithm, the dataset used, the performance metrics 

employed, and the creation of the BFO Java library within the 

WEKA environment. 
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A. System Design 

The system design of this research is illustrated in Fig. 1. 

There are crucial processes involved in feature selection, 

namely attribute selection using an attribute evaluator and 

subset selection using the Bacterial Foraging Optimization 

(BFO) search method.  

 

 

Fig. 1  System Design 

 

The following is an explanation of the system design: 

 High-dimensional datasets (with many features) will 

undergo classifier testing, which will later be compared 

with datasets processed using feature selection 

 The attribute evaluator functions to provide a merit 

value for each subset, and subsets with high merit 

values are sought. In this research, the algorithm used 

is Correlation Based Feature Selection (CFS) 

 After finding subsets with high merit values, the search 

method will explore and select the best subset with the 
top fitness value and the minimum number of features. 

In this research, the algorithm used is Bacterial 

Foraging Optimization (BFO) 

 Points b and c are continuously performed until all 

relevant features are found and irrelevant features are 

removed. 

 After successfully processing the dataset using feature 

selection, classification will be conducted using a 

classifier to measure the accuracy level. In this 

research, the algorithm used is Support Vector Machine 

(SVM). 

 Classification and complexity analysis will be 
performed on the results of classification between the 

unprocessed and processed datasets to compare various 

aspects, such as precision, recall, accuracy, time 

classification process, and fraction of features 

B. Bacterial Foraging Optimization (BFO) Algorithm 

The Bacterial Foraging Optimization (BFO) algorithm was 

proposed by Kevin Passino [28]. Compared to optimization 

algorithms inspired by natural swarms, such as Particle 
Swarm Optimization (PSO) and Ant Colony Optimization 

(ACO), BFO is relatively new. The key concept is to mimic 

the foraging behavior of Escherichia coli bacteria to optimize 

multi-optimal functions. Bacteria search for nutrients to 

maximize energy acquisition per unit of time. Individual 

bacteria communicate with each other by sending signals. 

During the nutrient search process, bacteria move by taking 

small steps in their environment, a process known as 

chemotaxis, which is the main idea behind BFO [11]. The 

steps of the BFO algorithm include Chemotaxis, Swarming, 

Reproduction, and Elimination Dispersal. 

1)   Chemotaxis: This stage replicates the motion of E. coli 

cells by incorporating swimming and tumbling motions using 

flagella. Here is the formula for chemotaxis: 

 ���� + 1, �, 	
 =  ����, �, 	
 + ��
 ∆��

�∆���
∆��
 (1) 

where ���� + 1, �, 	
 is he latest position of bacteria i after 

chemotaxis. ���� + 1, �, 	
 comprises the position of bacteria 

i during chemotaxis to j, reproduction to k, and elimination 

dispersal to l. ��
 is the steps taken by bacteria i when 

performing tumbling or swimming. While ∆��
 is the random 

value between -1 to 1 for each bacteria. 

2)   Swarming: When placed in the center of a semi-solid 

matrix containing a single nutrient chemo effector, E. coli 

cells will aggregate into a ring-like structure as they amplify 

the nutrient gradient. Cells sensing elevated succinate levels 

release aspartate attractant, facilitating their integration into 

the group and movement in a concentric pattern characterized 

by high bacterial density. 

3)   Reproduction: Weaker bacteria perish over time, while 

each healthier bacterium undergoes a process of asexual 

reproduction, dividing into two new bacteria positioned in the 

same location. This mechanism ensures a consistent size for 

the bacterial colony. 
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4)   Elimination Dispersal: A small probability is 

employed to eliminate a few bacteria to simulate this 

occurrence randomly. Simultaneously, new replacements are 

randomly introduced into the search space. When comparing 

the Bacterial Foraging Optimization (BFO) algorithm to 

optimization algorithms inspired by natural swarms, such as 

Particle Swarm Optimization (PSO) and Ant Colony 

Optimization (ACO), BFO is relatively new. The details of 

the Bacterial Foraging Optimization (BFO) algorithm are 

shown in the following pseudocode: 

Parameters: 

Initialization of parameters: �, �, ��, ��, ���, ���, ���,
��
�� = 1,2, … �
, �. 

Algorithm: 

a. Elimination dispersal loop: 	 = 	 + 1 

b. Reproduction loop: � = � + 1 

c. Chemotaxis loop: � = � + 1 

1.) For � = 1,2, … � take the Chemotaxis step for 

bacterium � 
2.) Calculate fitness function, ���, �, �, 	
 

 => ���, �, �, 	
 +  ���  ����, �, 	
, ���, �, 	
! (2) 

3.) �	"�# = ���, �, �, 	
 save values that allow us to find 

the best costs 

4.) Tumble: generate random vector ∆��
 ∈ %&  with 

each element ∆'��
, ' = 1,2, … � being a random 

value between −1 … 1 

5.) Move: ���j + 1, �, 	
 

 =>  ����, �, 	
 + ��
 ∆��

�∆���
∆��
 (3) 

This result is used in the tumble of bacterium i 

6.) Calculate ���, � + 1, �, 	
 and also calculate 

 => ���, �, �, 	
 +  ��� *���� + 1, �, 	
,
��� + 1, �, 	
 + (4) 

7.) Swim 

' = 0 (counter the length of swim) 

while ' < �� 

1) ' = ' + 1 

2) if ��� + 1, �, 	
 < �	"�# 

then  �	"�# =  ���, � + 1, �, 	
 and ���� + 1, �, 	
 

 =>  ����, �, 	
 + ��
 ∆��

�∆���
∆��
 (5) 

And use ����� + 1, �, 	

 to calculate a new 

���, � + 1, �, 	
 

3) Else, ' = ��. This is the final part of the whole 

statement. 

d. If � < ��, do step number 3. In this case, the continuation 

of bacteria's Chemotaxis does not end. 
e. Reproduction 

1.) For each � = 1,2, … , � 

 �./012.� =  ∑ ���, �, �, 	
4�56786  (6) 

The definition of health of bacterium i is a measure 

of how much nutrition it obtains during its lifetime 

and how successful it is in avoiding toxic 

substances. 

2.) The Sr bacteria with the highest Jhealth value will 

die and the remaining Sr with the best value will be 

exchanged. 

f. If � < ���, then do step number 2. 

g. Elimination – dispersal. 

For � = 1,2, … , � with the probability ���, Elimination and 

dispersal of each bacterium. If a bacterium is eliminated, 

perform simple dispersal to a random location within the 

optimization domain. If 	 < ���, do step number 1. 

C. Dataset Used 

The dataset used in this study utilizes open datasets 

TurkishTextCategorizationProject [10] and microarray 

datasets [11] obtained from the link: 

https://csse.szu.edu.cn/staff/zhuzx/Datasets.Html.  A total of 

9 datasets were used with the number of attributes ranging 

from 24,481 (highest) to 4,026 (lowest). Table I shows the list 
of datasets used. 

TABLE I 

THE DATASETS 

# Dataset Name Instances Attributes Source 

1 Breast Cancer 97 24481 [29] 
2 Lung Cancer 181 12532 [29] 
3 ALL-AML-3 72 7129 [29] 
4 ALL-AML-4 72 7129 [29] 
5 ALL-AML 72 7129 [29] 

6 Lymphoma 66 4026 [29] 
7 MLL 72 12582 [29] 
8 Ovarian Cancer 253 15154 [29] 
9 Zemberek-Stemmed 3600 5693 [30] 

D. Performance Measurement 

This study employs performance evaluation using metrics 

such as Accuracy, Precision, and Recall derived from the 
confusion matrix. 

TABLE II 

CONFUSION MATRIX 

  Actual Values 

  TRUE FALSE 

Prediction 

values 

TRUE TP (True 
Positive):Correct 
result 

FP (False 
Positive): 
Unexpected 
result 

FALSE FN (False 
Negative): Missing 
result 

TN (True 
Negative): 
Correct absence 
of result 

 

The equations for computing the values of Accuracy, 

Precision, and Recall from the confusion matrix are provided 

in Table 3 below, including the time classification process and 

fraction of features. 

TABLE III 

MEASUREMENT CLASSIFICATION PERFORMANCES 

Measurement Formula 

Accuracy TP+TN/ TP+TN+FP+FN 
Precision TP / TP+FP 
Recall TP/TP+FN 

Time Time classification process 

Fraction of Features Reduced Feature / Full Feature * 100% 
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E. Development of Bacterial Foraging Optimization Java 

library on Weka 

The following figure (Fig 2) is the design of the BFSearch 

Method implemented in WEKA. 
 

 
Fig. 2  BFOSearch Method Design 

 

In Fig. 2, the main class BFOSearch implements several 

interfaces and methods, and there is the main class 
weka::attributeSelection::ASSearch which functions as the 

main process in Attribute Selection. In this class, the main 

method implemented is search(), which serves as a feature 

subset searcher using the BFO algorithm and returns the result 

as the best-performing feature subset. In addition to 

implementing the search() method, the 

weka::attributeSelection::ASSearch also extends several 

interfaces: StartSethandler, OptionHandler, Serializable, and 

TechnicalInformationHandler. The following is an 

explanation of each interface extended by the 

weka::attributeSelection::ASSearch: 

1) weka::attributeSelection::StartSetHandler 

This is an interface that plays a role for the search method 

to provide attributes. The implemented methods include 

setStartSet(), which is used to add a subset that the user wants 

to include as one of the solutions in the search process. The 

next method is getStartSet(), which returns the string 
representation of the feature subset entered by the user at the 

beginning of the search in the startSet parameter. 

2) weka::core::optionHandler 

This is an interface that provides the option setting for the 

implemented method. The methods included are as follows: 
 getOptions(): This method returns the list of options 

that the user has input. 

 listOptions(): It returns an object enumeration 

describing the options available in the search method, 

such as assigning values to variables. 

 setOptions(): This method is used to provide a list of 

options to the search method being executed." 

3) weka::core::TechnicalInformationHelper 

This interface serves to display the publications of the 

author or authors of the Search Method. The implemented 

method is getTechnicalInformation(), which returns 

information about the constructed class. 

4) Interface Serializable 

This interface serves to perform Serialization. Serialization 

in Java functions as a process where the state of an object can 

be saved as a sequence of bytes, and vice versa.  

The creation of the Library for Attribute Selection in Weka, 

carried out in this study, consists of two parts: Attribute 

Evaluator and Search Method: 

1) Attribute Evaluator 

The Evaluator functions to determine the merit of attribute 

selection. This Attribute Evaluator has superclasses, 

interfaces, and methods. 

 Superclasses and Interfaces: 

weka.attributeSelection.ASEvaluation" is the parent 

class of all evaluators.  

Below are several interfaces most frequently utilized by 

evaluators: 

a. AttributeEvaluator: only evaluating a single attribute 

b. SubsetEvaluator: Evaluating a subset of attributes 

c. AttibuteTransformer: An evaluator that functions to 

transform input data. 

 Methods 

Below are the methods used by the evaluator: 

a. buildEvaluator(Instances) 
This technique creates the attribute evaluator. 

Repeatedly employing this technique with identical 

data (and the same search algorithm) should yield 

consistent attribute selections. Additionally, this 

method verifies the capabilities of the data. 

b. postProcess(int[]) 

It can serve as an optional step for post-processing 

the chosen attributes, intended to perform ranking. 

c. main(String[]) 

d. Running the evaluator via the command line. 

2) Search Method 

The search algorithm determines heuristic exploration, 

encompassing methods like Exhaustive Search and Genetic 

Algorithm. Additionally, this study introduces a novel search 

approach termed BFOSearch. This Search Method has 

superclasses, interfaces, and methods: 

 Superclasses dan Interfaces 
weka.attributeSelection.ASSearch is the parent class of 

all search algorithms.  

Interfaces that can be implemented and applied by 

search algorithms are as follows: 

a. RankedOutputSearch 

Displaying the output in the form of a list ranking of 

attributes. 

b. StartSetHandler: 

Search algorithms that require a start set can 

implement these interfaces 

 Methods 
Only the following method needs to be implemented in 

Search Methods:  
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Search (ASEvaluation,Instances). This method is 

utilized to execute the search using the designated 

search algorithm. The desired search algorithm's code 

is inserted within this method. In this study, the search 

method with the BFO Java library is implemented, as 

explained in the previous section. 

III. RESULTS AND DISCUSSION 

In the experiment, two types of tests were conducted: 

testing the BFO Java library on the WEKA tool, and 

subsequently evaluating the performance of the BFO 

algorithm as the one used in the feature selection process, 

compared to four other algorithms. Comparison of algorithms 

conducted using the same datasets as explained in section 

II.C.   

A. Testing BFO Java library on WEKA's Feature Selection 

Capabilities 

The following test is conducted to ensure that the BFO 

algorithm has been successfully added as one of the feature 

selection methods in WEKA.   

The steps taken are as follows: 

 In WEKA, use the Explorer menu option to perform the 

feature selection process, and from the available 

methods, select BFOSearch, which has been included 

previously.  
 

 
Fig. 3  WEKA Explorer 

 Afterwards, the dataset to be utilized for feature 

selection should be chosen. This requires loading the 

dataset into Weka through the "Open File" button 

 

 
Fig. 4  Input the Dataset 

 

 Select the Select Attributes tab, and choose BFOSearch 

as the Search Method 
 

 
Fig. 5  Choose BFOSearch Method 

 

 Next, specify the parameters for BFOSearch, which 

include: bacterial movement, chemotactic steps, colony 

count, dispersal, probability of dispersal, reproduction 

steps, swim steps, and the desired subset to be added 
 

 
Fig. 6  Parameter BFOSearch Method 

 

 Then, initiate the feature selection process by clicking 

the start button, and wait until the process is completed. 
 

 
Fig. 7  Feature Selection Process 
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 Next, save the results of the feature selection by clicking 

the "Save reduced data". 
 

 
Fig. 8  Save Reduced Data 

B. Evaluating the Performance of BFO in Feature Selection 

In this assessment, the efficacy of BFO in the feature 

selection process is compared with four alternative 

algorithms, namely: Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO), Artificial Bee Colony (ABC), and Ant 

Colony Optimization (ACO). These five algorithms have 

different parameters in the feature selection process, which 

will be used as benchmarks for the calculations. 

The specified parameters for each algorithm are as follows: 

1) Bacterial Foraging Optimization Parameter 

 bacteria movement: 0.05 

 chemotactic steps: 20 

 colony size: 100 

 dispersal steps: 4 

 dispersal probability: 0.25 

 reproduction steps: 8 

 swim steps: 5 

2) Genetic Algorithm Parameter 

 population size: 20 

 max generations: 20 

 crossover probability: 0.6 

 mutation probability: 0.033 
 Random seed: 1 

 Report frequency: 20 

3) Particle Swarm Optimization Parameter 

 Individual weight: 0.34 

 Inertial weight: 0.33 

 iterations: 30 
 mutation probability: 0.01 

 mutation type: bit-flip 

 population size: 20  

 Random seed: 1 

 Report frequency: 20 

 Social weight: 0.33 

4) Artificial Bee Colony Parameter 

 food number: 30 

 max foraging cycle: 30 

 max trial: 6 

 modification rate: 0.2 

 Random seed: 1 

5) Ant Colony Optimization Parameter  

 chaotic coefficient: 4 

 Accelerate type: normal 

 Chaotic parameter type: normal 

 Chaotic population type: normal 

 Chaotic type: logistic map 

 Evaporation: 0.9 

 Heuristic: 0.7 

 Iterations: 20 

 Log File: dist. 

 mutation probability: 0.01 

 mutation type: bit-flip 
 Pheromone: 2 

 population size: 20 

 Random seed: 1 

After performing feature selection using the Bacterial 

Foraging Optimization (BFO) algorithm, the results of the 

feature selection are shown in Table IV. The performance 

measurement uses fraction of features.  The feature fraction 

represents the proportion of features remaining after the 

selection process. A lower feature fraction indicates a smaller 

number of successfully selected features. Therefore, based on 

its definition, the smaller the value of the fraction of features, 

the better the results of the feature selection process. 

TABLE IV 

FEATURE SELECTION USING BFO 

# 
Dataset 

Name 

Full 

Attributes 

Reduced 

Attributes 

Fraction of 

Features 

1 
Breast 
Cancer 

24482 1323 5.4% 

3 
ALL-AML 
3c 

7130 2243 31.4% 

4 
ALL-AML 
4c 

7130 1969 27.6% 

5 ALL-AML 7130 2261 31.7% 

6 Lung 12601 4203 33.3% 

7 Lymphoma 4027 248 6.1% 

8 MLL 12583 189 1.5% 

9 
Ovarian 
Cancer 

15155 34 0.2% 

10 
Zemberek-
Stemmed 

5693 725 12.7% 

Average ± standard deviation 15.8% ± 0.0854 

 

Table IV shows the results of feature selection using 

Bacterial Foraging Optimization, resulting in an average 

fraction of features of 15.8%. In Table IV, the best result of 

the feature selection process is obtained in the ovarian cancer 

dataset, as indicated by the smallest value of its fraction of 

features of 0.2%. Furthermore, the evaluation of accuracy 
changes before and after performing feature selection using 

Bacterial Foraging Optimization (BFO) is presented in Table 

V. 
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TABLE V 

FEATURE SELECTION ACCURACY USING BFO 

# Dataset Name 
Accuracy 

Before 
Accuracy After 

1 Breast Cancer 0.527 0.477 

2 ALL-AML-3 0.529 0.529 

3 ALL-AML-4 0.529 0.529 

4 ALL-AML 0.654 0.654 

5 Lung 0.685 0.685 

6 Lymphoma 1 1 

7 MLL 0.389 0.389 

8 Ovarian Cancer 0.868 0.886 

9 
Zemberek-
Stemmed 

0.852 0.718 

 

Table V shows the accuracy before and after feature 

selection using BFO (Bacterial Foraging Optimization). 

Based on the table, it can be analyzed that the accuracy 

generally remains consistent before and after feature 

selection, as experienced by 5 (five) datasets, namely ALL-

AML-3, ALL-AML-4, Lung, Lymphoma, and MLL. There 

are two datasets, Breast Cancer and Zemberek-Stemmed, that 

experience a decrease in accuracy, while the Ovarian Cancer 

dataset shows an increase in accuracy.  In Table 5, it can be 

observed that the best value of the fraction of features in the 

Ovarian Cancer dataset means that this dataset has the fewest 
selected features. As a result, the learning process will be 

faster with significantly fewer features, and surprisingly, the 

accuracy value shows a substantial improvement, increasing 

from 0.868 before feature selection to 0.886 after feature 

selection. This indicates that the use of feature selection 

results in attributes that are relevant to the outcome variable, 

leading to an increase in accuracy. 

The comparison of classification process time before and 

after feature selection using Bacterial Foraging Optimization 

(BFO) is presented in Table VI. 

TABLE VI 

CLASSIFICATION PROCESSING TIME AFTER FEATURE SELECTION 

# Dataset Name 
Time (s) 

Before 
Time (s) After 

1 Breast Cancer 26.6 1.6 

2 ALL-AML-3 4.8 1.8 

3 ALL-AML-4 6 1.8 

4 ALL-AML 4 1.7 

5 Lung 75 21 

6 Lymphoma 2 0.6 

7 MLL 9.6 0.3 

8 Ovarian Cancer 56.8 0.3 

9 
Zemberek-
Stemmed 

104.9 17.9 

Table VI shows the comparison of classification processing 

time before and after feature selection. It is evident that there 

is a significant change in the processing time in all datasets. 

With significantly fewer features in the Ovarian Cancer 

dataset, the obtained classification processing time is much 

shorter, taking only 0.3 seconds compared to the previous 56 

seconds. The comparison of the reduced features in five 

algorithms is shown in Table VII. 

TABLE VII 

COMPARISON OF REDUCED FEATURES IN FIVE ALGORITHMS 

# 
Dataset 

Name 

Full 

Attrib. 

Reduced Attributes 

BFO GA PSO ABC ACO 

1 
Breast 

Cancer 
24482 1323 2782 4254 8600 5007 

2 ALL-AML-3 7130 2243 2146 2109 2545 2258 

3 ALL-AML-4 7130 1969 971 2275 2389 2372 

 

4 
ALL-AML 7130 2261 2236 2065 2612 2361 

5 Lung 12601 4203 4618 2777 4490 4708 

6 Lymphoma 4027 248 1166 1279 1385 1238 

7 MLL 12583 189 193 189 653 189 

8 
Ovarian 

Cancer 
15155 34 3749 504 4257 1219 

9 
Zemberek-

Stemmed 
5693 725 917 997 571 1334 

 

BFO = Bacterial Foraging Optimization 

GA = Genetic Algorithm 

PSO = Particle Swarm Optimization  

ABC = Artificial Bee Colony 

ACO = Ant Colony Optimization  

 

Table VII shows the comparison of the number of reduced 

features after performing feature selection using 5 (five) 

algorithms, namely GA, PSO, ABC, ACO, and BFO. Based 

on the results, it can be analyzed that BFO performs 

effectively in reducing features. Out of the 9 (nine) tested 

datasets, BFO outperformed in 4 (four) datasets. 

TABLE VIII 

COMPARISON OF ACCURACY IN FIVE ALGORITHMS 

# 
Dataset 

Name 

Accuracy 

Before 

Accuracy After 

BFO GA PSO ABC ACO 

1 
Breast 

Cancer 
0.527 0.477 0.467 0.508 0.53 0.474 

2 
ALL-

AML-3 
0.529 0.529 0.529 0.529 0.529 0.529 

3 
ALL-

AML-4 
0.529 0.529 0.529 0.529 0.529 0.529 

4 ALL-AML 0.654 0.654 0.654 0.654 0.654 0.654 

5 Lung 0.685 0.685 0.685 0.685 0.685 0.685 

6 Lymphoma 1 1 1 1 1 1 

7 MLL 0.389 0.389 0.389 0.389 0.389 0.389 

8 
Ovarian 
Cancer 

0.868 0.886 0.923 0.907 0.9 0.896 

9 
Zemberek-

Stemmed 
0.852 0.718 0.73 0.76 0.706 0.782 

 

BFO = Bacterial Foraging Optimization 

GA = Genetic Algorithm 

PSO = Particle Swarm Optimization  

ABC = Artificial Bee Colony 

ACO = Ant Colony Optimization 

 

Table VIII shows a comparison of accuracy after the 

feature selection process using the Reduced Dataset with 5 

different algorithms. Based on the results, it can be observed 

that the accuracy before and after feature selection remained 

unchanged in six datasets, namely ALL-AML-3, ALL-AML-
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4, ALL-AML, Lung, Lymphoma, and MLL. However, in the 

breast cancer and Zemberek-Stemmed datasets, there was a 

slight decrease in accuracy, although not significantly. On the 

other hand, the Ovarian Cancer dataset exhibited an increase 

in accuracy for all algorithms, with the highest accuracy 

achieved by the GA algorithm at 0.923. However, this 

accuracy value is not considerably different from BFO, which 

had an accuracy of 0.886 after the feature selection process. 

With the best fraction of feature value at 0.2% in the Ovarian 

Cancer dataset, BFO managed to significantly reduce the 
classification processing time from 56.8 seconds to just 0.3 

seconds, as shown in Table IX. 

TABLE IX 

COMPARISON OF CLASSIFICATION PROCESSING TIME IN FIVE ALGORITHMS 

# 
Dataset 

Name 

Time (s) 

Before 

Time (s) After Feature Selection 

BFO GA PSO ABC ACO 

1 Breast 

Cancer 

26.6 1.6 3.7 4.1 8.5 4.8 

2 ALL-AML 

3c 

4.8 1.8 2 1.8 2.6 2.1 

3 ALL-AML 

4c 

6 1.8 1.3 2.1 2.2 2.4 

4 ALL-AML 4 1.7 1.8 1.7 2.2 2.2 

5 Lung 75 21 26.1 16 24.3 24.3 

6 Lymphoma 2 0.6 1.1 1.1 1.3 0.6 

7 MLL 9.6 0.3 0.9 0.3 0.6 0.9 

8 Ovarian 56.8 0.3 11.4 1.9 13 3.5 

9 Zemberek-

Stemmed 

104.9 17.9 56.4 23.6 16 27.7 

 

BFO = Bacterial Foraging Optimization 

GA = Genetic Algorithm 

PSO = Particle Swarm Optimization  

ABC = Artificial Bee Colony 

ACO = Ant Colony Optimization 

 

Table IX shows the comparison of the time in seconds 

required to perform the classification process on the dataset 

before and after feature selection using 5 algorithms. In most 

of the feature-selected datasets using BFO, the processing 

time is superior compared to the others, specifically in 6 
datasets, as BFO has the greatest reduction in features and the 

smallest fraction of features, as indicated by Tables VII.  This 

suggests that feature selection significantly reduces 

classification time, particularly noticeable in datasets with a 

high volume of instances, like the Zemberrek Stemmed 

dataset, which contains 3600 instances. The time required for 

classifying these datasets is almost 104 seconds or equivalent 

to 1 minute and 44 seconds. However, when feature selection 

is performed using BFO, the classification only takes 17.9 

seconds. From Table IX, it can be seen that BFO achieved the 

fastest processing time in most datasets, 6 out of 9 datasets. 

IV. CONCLUSION 

This study aims to develop the BFO (Bacterial Foraging 

Optimization) Java library to extend WEKA's capabilities in 

Feature Selection and compare its performance with four 

other feature selection algorithms that use Genetic Algorithm 

(GA), Particle Swarm Optimization (PSO), Artificial Bee 

Colony (ABC), and Ant Colony Optimization (ACO).  From 

testing results, BFO algorithm has been successfully added as 
one of the feature selection methods in WEKA.  The results 

obtained after conducting experiments using 9 (nine) high-

dimensional data sets show that BFO successfully reduces the 

least number of features and has the fastest classification time 

compared to other algorithms. 

From the experiments results, shows the accuracy before 

and after feature selection using BFO (Bacterial Foraging 

Optimization) remains consistent before and after feature 

selection therefore we can conclude that the Bacterial 

Foraging Optimization (BFO) algorithm is effective in feature 

selection. With significantly fewer features in the Ovarian 

Cancer dataset, the obtained classification processing time is 

much shorter, taking only 0.3 seconds compared to the 
previous 56.8 seconds. 

When compared to other evolutionary algorithms such as 

Genetic Algorithm (GA), Particle Swarm Optimization 

(PSO), Artificial Bee Colony (ABC), and Ant Colony 

Optimization (ACO), BFO performs effectively in reducing 

features. Out of the 9 tested datasets, BFO outperformed in 4 

datasets. In most of the feature-selected datasets using BFO, 

the processing time is superior compared to the others, 

specifically in 6 datasets, as BFO has the greatest reduction in 

features and the smallest fraction of features.  Additionally, 

the comparison of classification processing time among the 
five algorithms shows that BFO performs competitively in 

terms of time efficiency. Overall, the experiments 

demonstrate that BFO emerges as a promising choice for 

feature selection in datasets with high dimensions, providing 

stable accuracy and efficient processing time. 

For further development, improvements can be made to the 

existing processes in Bacterial Foraging Optimization, 

specifically by enhancing one of the stages to achieve better 

feature selection, which involves modifying the chemotaxis 

process into an adaptive one. 
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