
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Development of a Java Library with Bacterial Foraging Optimization

for Feature Selection of High-Dimensional Data

Tessy Badriyah a, Iwan Syarif a, Fitriani Rohmah Hardiyanti b
a Department of Informatics and Computer Engineering, Politeknik Elektronika Negeri Surabaya, Surabaya 60112, Indonesia

b PT. Sinergi Informatika Semen Indonesia, Gresik, 61122, Indonesia

Corresponding author: *tessy@pens.ac.id

Abstract—High-dimensional data allows researchers to conduct comprehensive analyses. However, such data often exhibits

characteristics like small sample sizes, class imbalance, and high complexity, posing challenges for classification. One approach

employed to tackle high-dimensional data is feature selection. This study uses the Bacterial Foraging Optimization (BFO) algorithm

for feature selection. A dedicated BFO Java library is developed to extend the capabilities of WEKA for feature selection purposes.

Experimental results confirm the successful integration of BFO. The outcomes of BFO's feature selection are then compared against

those of other evolutionary algorithms, namely Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Artificial Bee Colony

(ABC), and Ant Colony Optimization (ACO). Comparison of algorithms conducted using the same datasets. The experimental results

indicate that BFO effectively reduces features while maintaining consistent accuracy. In 4 out of 9 datasets, BFO outperforms other

algorithms, showcasing superior processing time performance in 6 datasets. BFO is a favorable choice for selecting features in high-

dimensional datasets, providing consistent accuracy and effective processing. The optimal fraction of features in the Ovarian Cancer

dataset signifies that the dataset retains a minimal number of selected attributes. Consequently, the learning process gains speed due to

the reduced feature set. Remarkably, accuracy substantially increased, rising from 0.868 before feature selection to 0.886 after feature

selection. The classification processing time has also been significantly shortened, completing the task in just 0.3 seconds, marking a

remarkable improvement from the previous 56.8 seconds.

Keywords—Feature selection; high dimensional data; bacterial foraging optimization evolutionary algorithm; evolutionary algorithm.

Manuscript received 27 Sep. 2023; revised 7 Dec. 2023; accepted 23 Feb. 2024. Date of publication 31 Mar. 2024.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

The high dimensionality of data can be reduced through

dimensionality reduction techniques. In machine learning and
statistics, dimensionality reduction refers to reducing the

number of variables according to specific criteria or finding a

concise representation of high-dimensional data[1].

Dimensionality reduction can be categorized into two main

types: feature selection and feature extraction [1]-[4]. Feature

extraction aims to minimize the resources needed to represent

extensive data. In contrast, feature selection combines search

techniques to obtain a new subset of features, evaluated by an

evaluation measure that assesses different feature subsets.

Feature selection is a crucial preprocessing step for

managing high-dimensional data to identify and retain
influential features that impact classification results. This

process reduces data dimensionality by removing irrelevant

features, thus improving data effectiveness and accuracy [5],

[6]. Feature selection can be categorized into two main

approaches: filters and wrappers. Filters operate

independently of the model by selecting variables based on

general characteristics such as correlation with predicted

variables. This method discards the least informative

variables while retaining others for use in the classification or

regression model. It is highly efficient in terms of
computation time and resistant to overfitting. However, filter

methods may include redundant variables as they overlook

inter-variable relationships. Hence, they are commonly

employed as preprocessing steps. On the other hand, wrappers

assess subsets of potential variables based on the estimated

accuracy of the target learning algorithm [7].

Feature extraction holds significant importance in machine

learning endeavors. In their study, Guyon et al. [1] provide a

comprehensive analysis of various feature extraction

methods, drawing from papers presented at the NIPS 2003

workshop on feature extraction. Their work is a foundational
reference for comprehending feature extraction techniques

299

JOIV : Int. J. Inform. Visualization, 8(1) - March 2024 299-308

and their real-world implementations. Additionally, Wang et

al. [4] focus on feature selection techniques in their

publication within the Encyclopedia of Machine Learning and

Data Mining. They offer valuable insights into the diverse

methods and approaches employed in feature selection.

One of the methods of feature selection is Bacterial

Foraging Optimization (BFO). BFO is an optimization

algorithm that draws inspiration from the foraging behavior

of bacteria. It has been employed in various domains,

including image segmentation, power management, and
parameter optimization. Kumar and Vishwakarma [8]

propose a multi-level crop image segmentation method

utilizing BFO and minimum cross entropy, demonstrating

encouraging results in image segmentation. Zhang et al. [9]

concentrate on enhancing the performance of BFO by

incorporating a multi-colony cooperation strategy, thereby

improving the algorithm's optimization capabilities.

Dubuisson et al. [10] utilize BFO for predictive control in a

standalone microgrid, demonstrating its effectiveness in

managing power systems. Subhashini et al. [11] utilize BFO

to fine-tune parameters of an artificial neural network (ANN)
through adaptive Harris Hawks weight optimization, resulting

in enhanced performance of the ANN model. Meanwhile,

Zhang et al. [12] propose a multi-objective BFO algorithm

tailored for cognitive emergency communication networks,

prioritizing optimizing practical areas as a pivotal aspect.

Several researchers have improved BFO by modifying

the steps of the BFO algorithm. These enhancements were

diverse, from integrating Chaotic chemotaxis step length,

Gaussian mutation, and chaotic local search into BFO as

demonstrated in [13] and adopting a discrete approach for

community detection in networks [14]. Furthermore,
modifications such as incorporating adaptive chemotaxis

processes and proposing new strategies for bacteria fitness

assignment and selection were introduced in [15].

Similarly, improvements such as combining gravitational

search and swarm diversity strategies were made [16].

Additionally, enhancements targeted specific applications,

such as using BFO in robotic cells with sequence-

dependent setup times and multi-objective multi-echelon

supply chain optimization problems. These adaptations

were validated through rigorous testing on various

benchmark problems and real-world scenarios. Moreover,

efforts were made to refine BFO's exploration ability
through chemotactic strategies based on Gaussian

distribution and swarm diversity in reproduction strategies,

as highlighted in [17]. Furthermore, BFO was combined

with genetic algorithms in [18] to improve multi-objective

optimization in multiple sequence alignment tasks. Lastly,

advancements such as incorporating adaptive step lengths

in chemotaxis were introduced in [19], yielding superior

results to the original BFO algorithm. Another

improvement of BFO is that a refined version of BFO,

termed ChaoticBFO, integrates two chaotic strategies to

strike a better balance between exploitation and
exploration[20]. Validated across 23 numerical benchmark

functions, this improvement was compared against ten

competitive metaheuristic algorithms. In another stride

forward, enriching individual diversity within BFO to prevent

entrapment in local optima was proposed [21]. Additionally,

the segmentation and adjustment of bacteria step sizes based

on fitness values were introduced to accelerate convergence

and enhance search capabilities. Furthermore, dynamic

variations in search scope and chemotaxis steps were

introduced, significantly accelerating convergence and

improving search precision, showcasing high efficiency, rapid

convergence, and a strong capability for global search [22].

Finally, an iterative process where a dimension-by-dimension

update evaluation strategy combined updated values to form

new solutions was adopted [23]. Experimental results

illustrated the effectiveness of this strategy in improving
convergence speed and solution quality within the BFO

algorithm.

In addition, BFO has been implemented in several case

studies such as the following research endeavors: In [24],

BFO was implemented in cellular manufacturing systems

(CMS), and its performance was compared with other

commonly used algorithms in the literature such as GA and

K-Means. Furthermore, in [25], BFO was utilized to predict

protein structures, improving search quality by minimizing

the free energy level of overall structure with 17 proteins.

Additionally, BFO implementation in menu planning
problems was observed in [26], where a mathematical model

satisfying the nutritional needs of individuals while enforcing

the "Laws of Nutrition" was designed. A menu generator

software prototype was developed to create custom menus

with different characteristics for 15 users, yielding

satisfactory results from an expert's perspective.

This study employs the Bacterial Foraging Optimization

(BFO) algorithm as an evolutionary technique to improve the

Feature Selection process. The primary objective of

incorporating this evolutionary algorithm is to boost the

effectiveness of removing irrelevant features while
simultaneously enhancing the speed and accuracy of

information acquisition through the wrapper technique search

method. The BFO algorithm chosen for feature selection was

then implemented by creating a Java library as one of the

feature selection capabilities in WEKA tools[27]. WEKA is

an open-source tool used for data analysis and machine

learning. WEKA stands for "Waikato Environment for

Knowledge Analysis," noting its origin at the University of

Waikato in New Zealand, where the software was developed.

WEKA offers various features and algorithms for data

analysis and machine learning. It provides an intuitive

interactive environment that allows users to run multiple data
analysis experiments without writing code from scratch. One

of WEKA's valuable capabilities is feature selection. In

addition to the use of the Bacterial Foraging Optimization

(BFO) algorithm for feature reduction across different open

datasets, this study also evaluates how BFO performs in

comparison to four other widely recognized feature selection

methods: Genetic Algorithm (GA), Particle Swarm

Optimization (PSO), Artificial Bee Colony (ABC), and Ant

Colony Optimization (ACO).

II. MATERIALS AND METHOD

In this section, we delve into the system design, the

operation of the Bacterial Foraging Optimization (BFO)

algorithm, the dataset used, the performance metrics

employed, and the creation of the BFO Java library within the

WEKA environment.

300

A. System Design

The system design of this research is illustrated in Fig. 1.

There are crucial processes involved in feature selection,

namely attribute selection using an attribute evaluator and

subset selection using the Bacterial Foraging Optimization

(BFO) search method.

Fig. 1 System Design

The following is an explanation of the system design:

 High-dimensional datasets (with many features) will

undergo classifier testing, which will later be compared

with datasets processed using feature selection

 The attribute evaluator functions to provide a merit

value for each subset, and subsets with high merit

values are sought. In this research, the algorithm used

is Correlation Based Feature Selection (CFS)

 After finding subsets with high merit values, the search

method will explore and select the best subset with the
top fitness value and the minimum number of features.

In this research, the algorithm used is Bacterial

Foraging Optimization (BFO)

 Points b and c are continuously performed until all

relevant features are found and irrelevant features are

removed.

 After successfully processing the dataset using feature

selection, classification will be conducted using a

classifier to measure the accuracy level. In this

research, the algorithm used is Support Vector Machine

(SVM).

 Classification and complexity analysis will be
performed on the results of classification between the

unprocessed and processed datasets to compare various

aspects, such as precision, recall, accuracy, time

classification process, and fraction of features

B. Bacterial Foraging Optimization (BFO) Algorithm

The Bacterial Foraging Optimization (BFO) algorithm was

proposed by Kevin Passino [28]. Compared to optimization

algorithms inspired by natural swarms, such as Particle
Swarm Optimization (PSO) and Ant Colony Optimization

(ACO), BFO is relatively new. The key concept is to mimic

the foraging behavior of Escherichia coli bacteria to optimize

multi-optimal functions. Bacteria search for nutrients to

maximize energy acquisition per unit of time. Individual

bacteria communicate with each other by sending signals.

During the nutrient search process, bacteria move by taking

small steps in their environment, a process known as

chemotaxis, which is the main idea behind BFO [11]. The

steps of the BFO algorithm include Chemotaxis, Swarming,

Reproduction, and Elimination Dispersal.

1) Chemotaxis: This stage replicates the motion of E. coli

cells by incorporating swimming and tumbling motions using

flagella. Here is the formula for chemotaxis:

 ���� + 1, �, 	
 = ����, �, 	
 + ��
 ∆��

�∆���
∆��
 (1)

where ���� + 1, �, 	
 is he latest position of bacteria i after

chemotaxis. ���� + 1, �, 	
 comprises the position of bacteria

i during chemotaxis to j, reproduction to k, and elimination

dispersal to l. ��
 is the steps taken by bacteria i when

performing tumbling or swimming. While ∆��
 is the random

value between -1 to 1 for each bacteria.

2) Swarming: When placed in the center of a semi-solid

matrix containing a single nutrient chemo effector, E. coli

cells will aggregate into a ring-like structure as they amplify

the nutrient gradient. Cells sensing elevated succinate levels

release aspartate attractant, facilitating their integration into

the group and movement in a concentric pattern characterized

by high bacterial density.

3) Reproduction: Weaker bacteria perish over time, while

each healthier bacterium undergoes a process of asexual

reproduction, dividing into two new bacteria positioned in the

same location. This mechanism ensures a consistent size for

the bacterial colony.

301

4) Elimination Dispersal: A small probability is

employed to eliminate a few bacteria to simulate this

occurrence randomly. Simultaneously, new replacements are

randomly introduced into the search space. When comparing

the Bacterial Foraging Optimization (BFO) algorithm to

optimization algorithms inspired by natural swarms, such as

Particle Swarm Optimization (PSO) and Ant Colony

Optimization (ACO), BFO is relatively new. The details of

the Bacterial Foraging Optimization (BFO) algorithm are

shown in the following pseudocode:

Parameters:

Initialization of parameters: �, �, ��, ��, ���, ���, ���,
��
�� = 1,2, … �
, �.

Algorithm:

a. Elimination dispersal loop: 	 = 	 + 1

b. Reproduction loop: � = � + 1

c. Chemotaxis loop: � = � + 1

1.) For � = 1,2, … � take the Chemotaxis step for

bacterium �
2.) Calculate fitness function, ���, �, �, 	

 => ���, �, �, 	
 + ��� ����, �, 	
, ���, �, 	
! (2)

3.) �	"�# = ���, �, �, 	
 save values that allow us to find

the best costs

4.) Tumble: generate random vector ∆��
 ∈ %& with

each element ∆'��
, ' = 1,2, … � being a random

value between −1 … 1

5.) Move: ���j + 1, �, 	

 => ����, �, 	
 + ��
 ∆��

�∆���
∆��
 (3)

This result is used in the tumble of bacterium i

6.) Calculate ���, � + 1, �, 	
 and also calculate

 => ���, �, �, 	
 + ��� *���� + 1, �, 	
,
��� + 1, �, 	
 + (4)

7.) Swim

' = 0 (counter the length of swim)

while ' < ��

1) ' = ' + 1

2) if ��� + 1, �, 	
 < �	"�#

then �	"�# = ���, � + 1, �, 	
 and ���� + 1, �, 	

 => ����, �, 	
 + ��
 ∆��

�∆���
∆��
 (5)

And use ����� + 1, �, 	

 to calculate a new

���, � + 1, �, 	

3) Else, ' = ��. This is the final part of the whole

statement.

d. If � < ��, do step number 3. In this case, the continuation

of bacteria's Chemotaxis does not end.
e. Reproduction

1.) For each � = 1,2, … , �

 �./012.� = ∑ ���, �, �, 	
4�56786 (6)

The definition of health of bacterium i is a measure

of how much nutrition it obtains during its lifetime

and how successful it is in avoiding toxic

substances.

2.) The Sr bacteria with the highest Jhealth value will

die and the remaining Sr with the best value will be

exchanged.

f. If � < ���, then do step number 2.

g. Elimination – dispersal.

For � = 1,2, … , � with the probability ���, Elimination and

dispersal of each bacterium. If a bacterium is eliminated,

perform simple dispersal to a random location within the

optimization domain. If 	 < ���, do step number 1.

C. Dataset Used

The dataset used in this study utilizes open datasets

TurkishTextCategorizationProject [10] and microarray

datasets [11] obtained from the link:

https://csse.szu.edu.cn/staff/zhuzx/Datasets.Html. A total of

9 datasets were used with the number of attributes ranging

from 24,481 (highest) to 4,026 (lowest). Table I shows the list
of datasets used.

TABLE I

THE DATASETS

Dataset Name Instances Attributes Source

1 Breast Cancer 97 24481 [29]
2 Lung Cancer 181 12532 [29]
3 ALL-AML-3 72 7129 [29]
4 ALL-AML-4 72 7129 [29]
5 ALL-AML 72 7129 [29]

6 Lymphoma 66 4026 [29]
7 MLL 72 12582 [29]
8 Ovarian Cancer 253 15154 [29]
9 Zemberek-Stemmed 3600 5693 [30]

D. Performance Measurement

This study employs performance evaluation using metrics

such as Accuracy, Precision, and Recall derived from the
confusion matrix.

TABLE II

CONFUSION MATRIX

 Actual Values

 TRUE FALSE

Prediction

values

TRUE TP (True
Positive):Correct
result

FP (False
Positive):
Unexpected
result

FALSE FN (False
Negative): Missing
result

TN (True
Negative):
Correct absence
of result

The equations for computing the values of Accuracy,

Precision, and Recall from the confusion matrix are provided

in Table 3 below, including the time classification process and

fraction of features.

TABLE III

MEASUREMENT CLASSIFICATION PERFORMANCES

Measurement Formula

Accuracy TP+TN/ TP+TN+FP+FN
Precision TP / TP+FP
Recall TP/TP+FN

Time Time classification process

Fraction of Features Reduced Feature / Full Feature * 100%

302

E. Development of Bacterial Foraging Optimization Java

library on Weka

The following figure (Fig 2) is the design of the BFSearch

Method implemented in WEKA.

Fig. 2 BFOSearch Method Design

In Fig. 2, the main class BFOSearch implements several

interfaces and methods, and there is the main class
weka::attributeSelection::ASSearch which functions as the

main process in Attribute Selection. In this class, the main

method implemented is search(), which serves as a feature

subset searcher using the BFO algorithm and returns the result

as the best-performing feature subset. In addition to

implementing the search() method, the

weka::attributeSelection::ASSearch also extends several

interfaces: StartSethandler, OptionHandler, Serializable, and

TechnicalInformationHandler. The following is an

explanation of each interface extended by the

weka::attributeSelection::ASSearch:

1) weka::attributeSelection::StartSetHandler

This is an interface that plays a role for the search method

to provide attributes. The implemented methods include

setStartSet(), which is used to add a subset that the user wants

to include as one of the solutions in the search process. The

next method is getStartSet(), which returns the string
representation of the feature subset entered by the user at the

beginning of the search in the startSet parameter.

2) weka::core::optionHandler

This is an interface that provides the option setting for the

implemented method. The methods included are as follows:
 getOptions(): This method returns the list of options

that the user has input.

 listOptions(): It returns an object enumeration

describing the options available in the search method,

such as assigning values to variables.

 setOptions(): This method is used to provide a list of

options to the search method being executed."

3) weka::core::TechnicalInformationHelper

This interface serves to display the publications of the

author or authors of the Search Method. The implemented

method is getTechnicalInformation(), which returns

information about the constructed class.

4) Interface Serializable

This interface serves to perform Serialization. Serialization

in Java functions as a process where the state of an object can

be saved as a sequence of bytes, and vice versa.

The creation of the Library for Attribute Selection in Weka,

carried out in this study, consists of two parts: Attribute

Evaluator and Search Method:

1) Attribute Evaluator

The Evaluator functions to determine the merit of attribute

selection. This Attribute Evaluator has superclasses,

interfaces, and methods.

 Superclasses and Interfaces:

weka.attributeSelection.ASEvaluation" is the parent

class of all evaluators.

Below are several interfaces most frequently utilized by

evaluators:

a. AttributeEvaluator: only evaluating a single attribute

b. SubsetEvaluator: Evaluating a subset of attributes

c. AttibuteTransformer: An evaluator that functions to

transform input data.

 Methods

Below are the methods used by the evaluator:

a. buildEvaluator(Instances)
This technique creates the attribute evaluator.

Repeatedly employing this technique with identical

data (and the same search algorithm) should yield

consistent attribute selections. Additionally, this

method verifies the capabilities of the data.

b. postProcess(int[])

It can serve as an optional step for post-processing

the chosen attributes, intended to perform ranking.

c. main(String[])

d. Running the evaluator via the command line.

2) Search Method

The search algorithm determines heuristic exploration,

encompassing methods like Exhaustive Search and Genetic

Algorithm. Additionally, this study introduces a novel search

approach termed BFOSearch. This Search Method has

superclasses, interfaces, and methods:

 Superclasses dan Interfaces
weka.attributeSelection.ASSearch is the parent class of

all search algorithms.

Interfaces that can be implemented and applied by

search algorithms are as follows:

a. RankedOutputSearch

Displaying the output in the form of a list ranking of

attributes.

b. StartSetHandler:

Search algorithms that require a start set can

implement these interfaces

 Methods
Only the following method needs to be implemented in

Search Methods:

303

Search (ASEvaluation,Instances). This method is

utilized to execute the search using the designated

search algorithm. The desired search algorithm's code

is inserted within this method. In this study, the search

method with the BFO Java library is implemented, as

explained in the previous section.

III. RESULTS AND DISCUSSION

In the experiment, two types of tests were conducted:

testing the BFO Java library on the WEKA tool, and

subsequently evaluating the performance of the BFO

algorithm as the one used in the feature selection process,

compared to four other algorithms. Comparison of algorithms

conducted using the same datasets as explained in section

II.C.

A. Testing BFO Java library on WEKA's Feature Selection

Capabilities

The following test is conducted to ensure that the BFO

algorithm has been successfully added as one of the feature

selection methods in WEKA.

The steps taken are as follows:

 In WEKA, use the Explorer menu option to perform the

feature selection process, and from the available

methods, select BFOSearch, which has been included

previously.

Fig. 3 WEKA Explorer

 Afterwards, the dataset to be utilized for feature

selection should be chosen. This requires loading the

dataset into Weka through the "Open File" button

Fig. 4 Input the Dataset

 Select the Select Attributes tab, and choose BFOSearch

as the Search Method

Fig. 5 Choose BFOSearch Method

 Next, specify the parameters for BFOSearch, which

include: bacterial movement, chemotactic steps, colony

count, dispersal, probability of dispersal, reproduction

steps, swim steps, and the desired subset to be added

Fig. 6 Parameter BFOSearch Method

 Then, initiate the feature selection process by clicking

the start button, and wait until the process is completed.

Fig. 7 Feature Selection Process

304

 Next, save the results of the feature selection by clicking

the "Save reduced data".

Fig. 8 Save Reduced Data

B. Evaluating the Performance of BFO in Feature Selection

In this assessment, the efficacy of BFO in the feature

selection process is compared with four alternative

algorithms, namely: Genetic Algorithm (GA), Particle Swarm

Optimization (PSO), Artificial Bee Colony (ABC), and Ant

Colony Optimization (ACO). These five algorithms have

different parameters in the feature selection process, which

will be used as benchmarks for the calculations.

The specified parameters for each algorithm are as follows:

1) Bacterial Foraging Optimization Parameter

 bacteria movement: 0.05

 chemotactic steps: 20

 colony size: 100

 dispersal steps: 4

 dispersal probability: 0.25

 reproduction steps: 8

 swim steps: 5

2) Genetic Algorithm Parameter

 population size: 20

 max generations: 20

 crossover probability: 0.6

 mutation probability: 0.033
 Random seed: 1

 Report frequency: 20

3) Particle Swarm Optimization Parameter

 Individual weight: 0.34

 Inertial weight: 0.33

 iterations: 30
 mutation probability: 0.01

 mutation type: bit-flip

 population size: 20

 Random seed: 1

 Report frequency: 20

 Social weight: 0.33

4) Artificial Bee Colony Parameter

 food number: 30

 max foraging cycle: 30

 max trial: 6

 modification rate: 0.2

 Random seed: 1

5) Ant Colony Optimization Parameter

 chaotic coefficient: 4

 Accelerate type: normal

 Chaotic parameter type: normal

 Chaotic population type: normal

 Chaotic type: logistic map

 Evaporation: 0.9

 Heuristic: 0.7

 Iterations: 20

 Log File: dist.

 mutation probability: 0.01

 mutation type: bit-flip
 Pheromone: 2

 population size: 20

 Random seed: 1

After performing feature selection using the Bacterial

Foraging Optimization (BFO) algorithm, the results of the

feature selection are shown in Table IV. The performance

measurement uses fraction of features. The feature fraction

represents the proportion of features remaining after the

selection process. A lower feature fraction indicates a smaller

number of successfully selected features. Therefore, based on

its definition, the smaller the value of the fraction of features,

the better the results of the feature selection process.

TABLE IV

FEATURE SELECTION USING BFO

Dataset

Name

Full

Attributes

Reduced

Attributes

Fraction of

Features

1
Breast
Cancer

24482 1323 5.4%

3
ALL-AML
3c

7130 2243 31.4%

4
ALL-AML
4c

7130 1969 27.6%

5 ALL-AML 7130 2261 31.7%

6 Lung 12601 4203 33.3%

7 Lymphoma 4027 248 6.1%

8 MLL 12583 189 1.5%

9
Ovarian
Cancer

15155 34 0.2%

10
Zemberek-
Stemmed

5693 725 12.7%

Average ± standard deviation 15.8% ± 0.0854

Table IV shows the results of feature selection using

Bacterial Foraging Optimization, resulting in an average

fraction of features of 15.8%. In Table IV, the best result of

the feature selection process is obtained in the ovarian cancer

dataset, as indicated by the smallest value of its fraction of

features of 0.2%. Furthermore, the evaluation of accuracy
changes before and after performing feature selection using

Bacterial Foraging Optimization (BFO) is presented in Table

V.

305

TABLE V

FEATURE SELECTION ACCURACY USING BFO

Dataset Name
Accuracy

Before
Accuracy After

1 Breast Cancer 0.527 0.477

2 ALL-AML-3 0.529 0.529

3 ALL-AML-4 0.529 0.529

4 ALL-AML 0.654 0.654

5 Lung 0.685 0.685

6 Lymphoma 1 1

7 MLL 0.389 0.389

8 Ovarian Cancer 0.868 0.886

9
Zemberek-
Stemmed

0.852 0.718

Table V shows the accuracy before and after feature

selection using BFO (Bacterial Foraging Optimization).

Based on the table, it can be analyzed that the accuracy

generally remains consistent before and after feature

selection, as experienced by 5 (five) datasets, namely ALL-

AML-3, ALL-AML-4, Lung, Lymphoma, and MLL. There

are two datasets, Breast Cancer and Zemberek-Stemmed, that

experience a decrease in accuracy, while the Ovarian Cancer

dataset shows an increase in accuracy. In Table 5, it can be

observed that the best value of the fraction of features in the

Ovarian Cancer dataset means that this dataset has the fewest
selected features. As a result, the learning process will be

faster with significantly fewer features, and surprisingly, the

accuracy value shows a substantial improvement, increasing

from 0.868 before feature selection to 0.886 after feature

selection. This indicates that the use of feature selection

results in attributes that are relevant to the outcome variable,

leading to an increase in accuracy.

The comparison of classification process time before and

after feature selection using Bacterial Foraging Optimization

(BFO) is presented in Table VI.

TABLE VI

CLASSIFICATION PROCESSING TIME AFTER FEATURE SELECTION

Dataset Name
Time (s)

Before
Time (s) After

1 Breast Cancer 26.6 1.6

2 ALL-AML-3 4.8 1.8

3 ALL-AML-4 6 1.8

4 ALL-AML 4 1.7

5 Lung 75 21

6 Lymphoma 2 0.6

7 MLL 9.6 0.3

8 Ovarian Cancer 56.8 0.3

9
Zemberek-
Stemmed

104.9 17.9

Table VI shows the comparison of classification processing

time before and after feature selection. It is evident that there

is a significant change in the processing time in all datasets.

With significantly fewer features in the Ovarian Cancer

dataset, the obtained classification processing time is much

shorter, taking only 0.3 seconds compared to the previous 56

seconds. The comparison of the reduced features in five

algorithms is shown in Table VII.

TABLE VII

COMPARISON OF REDUCED FEATURES IN FIVE ALGORITHMS

Dataset

Name

Full

Attrib.

Reduced Attributes

BFO GA PSO ABC ACO

1
Breast

Cancer
24482 1323 2782 4254 8600 5007

2 ALL-AML-3 7130 2243 2146 2109 2545 2258

3 ALL-AML-4 7130 1969 971 2275 2389 2372

4
ALL-AML 7130 2261 2236 2065 2612 2361

5 Lung 12601 4203 4618 2777 4490 4708

6 Lymphoma 4027 248 1166 1279 1385 1238

7 MLL 12583 189 193 189 653 189

8
Ovarian

Cancer
15155 34 3749 504 4257 1219

9
Zemberek-

Stemmed
5693 725 917 997 571 1334

BFO = Bacterial Foraging Optimization

GA = Genetic Algorithm

PSO = Particle Swarm Optimization

ABC = Artificial Bee Colony

ACO = Ant Colony Optimization

Table VII shows the comparison of the number of reduced

features after performing feature selection using 5 (five)

algorithms, namely GA, PSO, ABC, ACO, and BFO. Based

on the results, it can be analyzed that BFO performs

effectively in reducing features. Out of the 9 (nine) tested

datasets, BFO outperformed in 4 (four) datasets.

TABLE VIII

COMPARISON OF ACCURACY IN FIVE ALGORITHMS

Dataset

Name

Accuracy

Before

Accuracy After

BFO GA PSO ABC ACO

1
Breast

Cancer
0.527 0.477 0.467 0.508 0.53 0.474

2
ALL-

AML-3
0.529 0.529 0.529 0.529 0.529 0.529

3
ALL-

AML-4
0.529 0.529 0.529 0.529 0.529 0.529

4 ALL-AML 0.654 0.654 0.654 0.654 0.654 0.654

5 Lung 0.685 0.685 0.685 0.685 0.685 0.685

6 Lymphoma 1 1 1 1 1 1

7 MLL 0.389 0.389 0.389 0.389 0.389 0.389

8
Ovarian
Cancer

0.868 0.886 0.923 0.907 0.9 0.896

9
Zemberek-

Stemmed
0.852 0.718 0.73 0.76 0.706 0.782

BFO = Bacterial Foraging Optimization

GA = Genetic Algorithm

PSO = Particle Swarm Optimization

ABC = Artificial Bee Colony

ACO = Ant Colony Optimization

Table VIII shows a comparison of accuracy after the

feature selection process using the Reduced Dataset with 5

different algorithms. Based on the results, it can be observed

that the accuracy before and after feature selection remained

unchanged in six datasets, namely ALL-AML-3, ALL-AML-

306

4, ALL-AML, Lung, Lymphoma, and MLL. However, in the

breast cancer and Zemberek-Stemmed datasets, there was a

slight decrease in accuracy, although not significantly. On the

other hand, the Ovarian Cancer dataset exhibited an increase

in accuracy for all algorithms, with the highest accuracy

achieved by the GA algorithm at 0.923. However, this

accuracy value is not considerably different from BFO, which

had an accuracy of 0.886 after the feature selection process.

With the best fraction of feature value at 0.2% in the Ovarian

Cancer dataset, BFO managed to significantly reduce the
classification processing time from 56.8 seconds to just 0.3

seconds, as shown in Table IX.

TABLE IX

COMPARISON OF CLASSIFICATION PROCESSING TIME IN FIVE ALGORITHMS

Dataset

Name

Time (s)

Before

Time (s) After Feature Selection

BFO GA PSO ABC ACO

1 Breast

Cancer

26.6 1.6 3.7 4.1 8.5 4.8

2 ALL-AML

3c

4.8 1.8 2 1.8 2.6 2.1

3 ALL-AML

4c

6 1.8 1.3 2.1 2.2 2.4

4 ALL-AML 4 1.7 1.8 1.7 2.2 2.2

5 Lung 75 21 26.1 16 24.3 24.3

6 Lymphoma 2 0.6 1.1 1.1 1.3 0.6

7 MLL 9.6 0.3 0.9 0.3 0.6 0.9

8 Ovarian 56.8 0.3 11.4 1.9 13 3.5

9 Zemberek-

Stemmed

104.9 17.9 56.4 23.6 16 27.7

BFO = Bacterial Foraging Optimization

GA = Genetic Algorithm

PSO = Particle Swarm Optimization

ABC = Artificial Bee Colony

ACO = Ant Colony Optimization

Table IX shows the comparison of the time in seconds

required to perform the classification process on the dataset

before and after feature selection using 5 algorithms. In most

of the feature-selected datasets using BFO, the processing

time is superior compared to the others, specifically in 6
datasets, as BFO has the greatest reduction in features and the

smallest fraction of features, as indicated by Tables VII. This

suggests that feature selection significantly reduces

classification time, particularly noticeable in datasets with a

high volume of instances, like the Zemberrek Stemmed

dataset, which contains 3600 instances. The time required for

classifying these datasets is almost 104 seconds or equivalent

to 1 minute and 44 seconds. However, when feature selection

is performed using BFO, the classification only takes 17.9

seconds. From Table IX, it can be seen that BFO achieved the

fastest processing time in most datasets, 6 out of 9 datasets.

IV. CONCLUSION

This study aims to develop the BFO (Bacterial Foraging

Optimization) Java library to extend WEKA's capabilities in

Feature Selection and compare its performance with four

other feature selection algorithms that use Genetic Algorithm

(GA), Particle Swarm Optimization (PSO), Artificial Bee

Colony (ABC), and Ant Colony Optimization (ACO). From

testing results, BFO algorithm has been successfully added as
one of the feature selection methods in WEKA. The results

obtained after conducting experiments using 9 (nine) high-

dimensional data sets show that BFO successfully reduces the

least number of features and has the fastest classification time

compared to other algorithms.

From the experiments results, shows the accuracy before

and after feature selection using BFO (Bacterial Foraging

Optimization) remains consistent before and after feature

selection therefore we can conclude that the Bacterial

Foraging Optimization (BFO) algorithm is effective in feature

selection. With significantly fewer features in the Ovarian

Cancer dataset, the obtained classification processing time is

much shorter, taking only 0.3 seconds compared to the
previous 56.8 seconds.

When compared to other evolutionary algorithms such as

Genetic Algorithm (GA), Particle Swarm Optimization

(PSO), Artificial Bee Colony (ABC), and Ant Colony

Optimization (ACO), BFO performs effectively in reducing

features. Out of the 9 tested datasets, BFO outperformed in 4

datasets. In most of the feature-selected datasets using BFO,

the processing time is superior compared to the others,

specifically in 6 datasets, as BFO has the greatest reduction in

features and the smallest fraction of features. Additionally,

the comparison of classification processing time among the
five algorithms shows that BFO performs competitively in

terms of time efficiency. Overall, the experiments

demonstrate that BFO emerges as a promising choice for

feature selection in datasets with high dimensions, providing

stable accuracy and efficient processing time.

For further development, improvements can be made to the

existing processes in Bacterial Foraging Optimization,

specifically by enhancing one of the stages to achieve better

feature selection, which involves modifying the chemotaxis

process into an adaptive one.

REFERENCES

[1] I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, Feature extraction.

Foundations and applications. Papers from NIPS 2003 workshop on

feature extraction, Whistler, BC, Canada, December 11–13, 2003.

With CD-ROM. 2006.

[2] I. Guyon, J. Li, T. Mader, P. A. Pletscher, G. Schneider, and M. Uhr,

"Competitive baseline methods set new standards for the NIPS 2003

feature selection benchmark," Pattern Recognition Letters, vol. 28, no.

12, pp. 1438-1444, 2007/09/01/ 2007,

doi:10.1016/j.patrec.2007.02.014.

[3] A. Jain and D. Zongker, "Feature selection: evaluation, application,

and small sample performance," IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 19, no. 2, pp. 153-158, 1997,

doi: 10.1109/34.574797.

[4] M. Kudo and J. Sklansky, "Comparison of algorithms that select

features for pattern classifiers," Pattern Recognition, vol. 33, no. 1, pp.

25-41, 2000/01/01/ 2000, doi:10.1016/S0031-3203(99)00041-2.

[5] L. Ke, Z. Feng, and Z. Ren, "An efficient ant colony optimization

approach to attribute reduction in rough set theory," Pattern

Recognition Letters, vol. 29, no. 9, pp. 1351-1357, 2008/07/01/ 2008,

doi:10.1016/j.patrec.2008.02.006.

[6] D. Mittal and M. Bala, "Hybrid feature selection approach using

bacterial foraging algorithm guided by Naive Bayes classification," in

2017 8th International Conference on Computing, Communication

and Networking Technologies (ICCCNT), 3-5 July 2017 2017, pp. 1-

7, doi: 10.1109/ICCCNT.2017.8204178.

[7] B. Kumari and T. Swarnkar, "Filter versus wrapper feature subset

selection in large dimensionality micro array: A review," International

Journal of Computer Science and Information Technologies, vol. 2,

pp. 1048-1053, 01/01 2011.

[8] A. Kumar and A. K. Vishwakarma, "Multilevel Crop Image

Segmentation using Bacterial Foraging Optimization Based on

Minimum Cross Entropy," in 2021 International Conference on

Control, Automation, Power and Signal Processing (CAPS), 10-12

Dec. 2021 2021, pp. 1-6, doi: 10.1109/CAPS52117.2021.9730680.

307

[9] C. Zhang, J. Yu, and B. Niu, "Bacterial Foraging Optimization Based

on Multi-colony Cooperation Strategy," in 2020 IEEE Symposium

Series on Computational Intelligence (SSCI), 1-4 Dec. 2020 2020, pp.

1543-1548, doi: 10.1109/SSCI47803.2020.9308213.

[10] F. Dubuisson, A. Chandra, M. Rezkallah, and H. Ibrahim, "A Bacterial

Foraging Optimization Technique and Predictive Control Approach

for Power Management in a Standalone Microgrid," in 2020 IEEE

Electric Power and Energy Conference (EPEC), 9-10 Nov. 2020 2020,

pp. 1-7, doi: 10.1109/EPEC48502.2020.9320038.

[11] P. P. S. Subhashini, M. S. S. Ram, and D. S. Rao, "Bacterial Foraging

Optimized Parameters for ANN using Adaptive Harris Hawks Weight

Optimization," in 2021 6th International Conference on Inventive

Computation Technologies (ICICT), 20-22 Jan. 2021 2021, pp. 849-

854, doi: 10.1109/ICICT50816.2021.9358701.

[12] S. Zhang, X. Ji, L. Guo, and Z. Bao, "Multi-objective bacterial

foraging optimization algorithm based on effective area in cognitive

emergency communication networks," China Communications, vol.

18, no. 12, pp. 252-269, 2021, doi: 10.23919/JCC.2021.12.016.

[13] H. Chen, Q. Zhang, J. Luo, Y. Xu, and X. Zhang, "An enhanced

Bacterial Foraging Optimization and its application for training kernel

extreme learning machine," Applied Soft Computing, vol. 86, p.

105884, 2020/01/01/ 2020, doi:10.1016/j.asoc.2019.105884.

[14] B. Yang, X. Huang, W. Cheng, T. Huang, and X. Li, "Discrete

bacterial foraging optimization for community detection in networks,"

Future Generation Computer Systems, vol. 128, pp. 192-204,

2022/03/01/ 2022, doi:10.1016/j.future.2021.10.015.

[15] M. Kaur and S. Kadam, "A novel multi-objective bacteria foraging

optimization algorithm (MOBFOA) for multi-objective scheduling,"

Applied Soft Computing, vol. 66, pp. 183-195, 2018/05/01/ 2018,

doi:10.1016/j.asoc.2018.02.011.

[16] W. Zhao and L. Wang, "An effective bacterial foraging optimizer for

global optimization," Information Sciences, vol. 329, pp. 719-735,

2016/02/01/ 2016, doi:10.1016/j.ins.2015.10.001.

[17] L. Wang, W. Zhao, Y. Tian, and G. Pan, "A bare bones bacterial

foraging optimization algorithm," Cognitive Systems Research, vol.

52, pp. 301-311, 2018/12/01/ 2018, doi:10.1016/j.cogsys.2018.07.022.

[18] P. Manikandan and D. Ramyachitra, "Bacterial Foraging Optimization

–Genetic Algorithm for Multiple Sequence Alignment with Multi-

Objectives," Scientific Reports, vol. 7, no. 1, p. 8833, 2017/08/18 2017,

doi:10.1038/s41598-017-09499-1.

[19] X. Yan, Y. Zhu, H. Zhang, H. Chen, and B. Niu, "An Adaptive

Bacterial Foraging Optimization Algorithm with Lifecycle and Social

Learning," Discrete Dynamics in Nature and Society, vol. 2012, p.

409478, 2012/11/14 2012, doi: 10.1155/2012/409478.

[20] Q. Zhang, H. Chen, J. Luo, Y. Xu, C. Wu, and C. Li, "Chaos Enhanced

Bacterial Foraging Optimization for Global Optimization," IEEE

Access, vol. 6, pp. 64905-64919, 2018,

doi:10.1109/access.2018.2876996.

[21] J. Jiang, X. Xiong, Y. Ou, and H. Wang, "An Improved Bacterial

Foraging Optimization with Differential and Poisson Distribution

Strategy and its Application to Nurse Scheduling Problem," in

Advances in Swarm Intelligence, vol. 12145: Springer Nature

Switzerland AG 2020., 2020, pp. 312-24.

[22] Y. Chen and W. Lin, "An improved bacterial foraging optimization,"

in 2009 IEEE International Conference on Robotics and Biomimetics

(ROBIO), 19-23 Dec. 2009 2009, pp. 2057-2062,

doi:10.1109/robio.2009.5420524.

[23] M. He, J. Chen, and H. Deng, "Bacterial Foraging Optimization

Algorithm with Dimension by Dimension Improvement," in 2019 4th

International Conference on Computational Intelligence and

Applications (ICCIA), 21-23 June 2019 2019, pp. 1-5,

doi:10.1109/ICCIA.2019.00008.

[24] H. Nouri and T. S. Hong, "Development of bacteria foraging

optimization algorithm for cell formation in cellular manufacturing

system considering cell load variations," Journal of Manufacturing

Systems, vol. 32, no. 1, pp. 20-31, 2013/01/01/ 2013,

doi:10.1016/j.jmsy.2012.07.014.

[25] D. Ramyachitra and V. Veeralakshmi, "Bacterial Foraging

Optimization for protein structure prediction using FCC & HP energy

model," Gene Reports, vol. 7, pp. 43-49, 2017/06/01/ 2017,

doi:10.1016/j.genrep.2017.01.005.

[26] B. Hernández-Ocaña, O. Chávez-bosquez, J. HernáNdez-Torruco, J.

Canul-Reich, and P. Pozos-Parra, "Bacterial Foraging Optimization

Algorithm for Menu Planning," IEEE Access, vol. 6, pp. 8619-8629,

2018, doi: 10.1109/access.2018.2794198.

[27] G. Holmes, A. Donkin, and I. H. Witten, "WEKA: a machine learning

workbench," in "Computer Science Working Papers," Working Paper

1994. [Online]. Available: https://hdl.handle.net/10289/1138

[28] M. P. Kevin, "Bacterial Foraging Optimization," International Journal

of Swarm Intelligence Research (IJSIR), vol. 1, no. 1, pp. 1-16, 2010.

[29] Z. Zhu, Y.-S. Ong, and M. Dash, "Markov blanket-embedded genetic

algorithm for gene selection," Pattern Recognition, vol. 40, no. 11, pp.

3236-3248, 2007/11/01/ 2007, doi:10.1016/j.patcog.2007.02.007.

[30] "TurkishTextCategorizationProject - Browse /4. Zemberek-Stemmed

at SourceForge.net."

308

